

剑桥 7 -Test 1- reading passage 2

Question 14-20

Reading Passage 2 has seven paragraphs, A-H.

Choose the correct heading for paragraphs A and C-H from the list of heading below.

Write the correct number, i-xi, in boxes 14-20 on your answer sheet.

List of headings

- i Scientists' call for a revision of policy
- ii An explanation for reduced water use
- iii How a global challenge was met
- iv Irrigation systems fall into disuse
- v Environmental effects
- vi The financial cost of recent technological improvements
- vii The relevance to health
- viii Addressing the concern over increasing populations
- ix A surprising downward trend in demand for water
- x The need to raise standards
- xi A description of ancient water supplies

Making Every Drop Count

A The history of human civilisation is entwined with the history of the ways we have learned to manipulate water resources. As towns gradually expanded, water was brought from increasingly remote sources, leading

to sophisticated engineering efforts such as dams and aqueducts. At the height of the Roman Empire, nine major systems, with an innovative layout of pipes and well-built sewers, supplied the occupants of Rome with as much water per person as is provided in many parts of the industrial world today.

B During the industrial revolution and population explosion of the 19th and 20th centuries, the demand for water rose dramatically. Unprecedented construction of tens of thousands of monumental engineering projects designed to control floods, protect clean water supplies, and provide water for irrigation and hydropower brought great benefits to hundreds of millions of people. Food production has kept pace with soaring populations mainly because of the expansion of artificial irrigation systems that make possible the growth of 40 % of the world's food. Nearly one fifth of all the electricity generated worldwide is produced by turbines spun by the power of falling water.

C Yet there is a dark side to this picture: despite our progress, half of the world's population still suffers, with water services inferior to those available to the ancient Greeks and Romans. As the United Nations report on access to water reiterated in November 2001, more than one billion people lack access to clean drinking water; some two and a half billion do not have adequate sanitation services. Preventable water-related diseases kill an estimated 10,000 to 20,000 children every day, and the latest evidence suggests that we are falling behind in efforts to solve these problems.

D The consequences of our water policies extend beyond jeopardising human health. Tens of millions of people have been forced to move from their homes - often with little warning or compensation - to make way for the reservoirs behind dams. More than 20% of all fresh water fish species are now threatened or endangered because dams and water withdrawals have destroyed the free-flowing river ecosystems where they thrive. Certain irrigation practices degrade soil quality and reduce agricultural productivity. Groundwater aquifers* are being pumped down faster than they are naturally replenished in parts of India, China, the USA and elsewhere. And disputes over shared water resources have led to violence and continue to raise local, national and even international tensions.

E At the outset of the new millennium, however, the way resource planners think about water is beginning to change. The focus is slowly shifting back to the provision of basic human and environmental needs as

top priority -ensuring 'some for all, 'instead of 'more for some'. Some water experts are now demanding that existing infrastructure be used in smarter ways rather than building new facilities, which is increasingly considered the option of last, not first, resort. This shift in philosophy has not been universally accepted, and it comes with strong opposition from some established water organisations. Nevertheless, it may be the only way to address successfully the pressing problems of providing everyone with clean water to drink, adequate water to grow food and a life free from preventable water-related illness.

F Fortunately -and unexpectedly - the demand for water is not rising as rapidly as some predicted. As a result, the pressure to build new water infrastructures has diminished over the past two decades. Although population, industrial output and economic productivity have continued to soar in developed nations, the rate at which people withdraw water from aquifers, rivers and lakes has slowed. And in a few parts of the world, demand has actually fallen.

G What explains this remarkable turn of events? Two factors: people have figured out how to use water more efficiently, and communities are rethinking their priorities for water use. Throughout the first three-quarters of the 20th century, the quantity of freshwater consumed per person doubled on average; in the USA, water withdrawals increased tenfold while the population quadrupled. But since 1980, the amount of water consumed per person has actually decreased, thanks to a range of new technologies that help to conserve water in homes and industry. In 1965, for instance, Japan used approximately 13 million gallons* of water to produce \$1 million of commercial output; by 1989 this had dropped to 3.5 million gallons (even accounting for inflation) - almost a quadrupling of water productivity. In the USA, water withdrawals have fallen by more than 20 % from their peak in 1980.

H On the other hand, dams, aqueducts and other kinds of infrastructure will still have to be built, particularly in developing countries where basic human needs have not been met. But such projects must be built to higher specifications and with more accountability to local people and their environment than in the past. And even in regions where new projects seem warranted, we must find ways to meet demands with fewer resources, respecting ecological criteria and to a smaller budget.

(* 1 gallon: 4.546 litres)

Question 21-26

Do the following statements agree with the information given in Reading Passage 2?

In boxes 21-26 on your answer sheet, write

YES	<i>if the statement agree with the claims of the writer</i>
NO	<i>if the statement contradicts the claims of the writer</i>
NOT GIVEN	<i>if it is impossible to say what the writer thinks about this</i>

21 Water use per person is higher in the industrial world than it was in Ancient Rome.

22 Feeding increasing populations is possible due primarily to improved irrigation systems.

23 Modern water systems imitate those of the ancient Greeks and Romans.

24 Industrial growth is increasing the overall demand for water.

25 Modern technologies have led to a reduction in domestic water consumption.

26 In the future, governments should maintain ownership of water infrastructures.

【答案】

14. XI 15. VII 16. V 17. I 18. IX 19. II 20. X

21. FALSE 22. TRUE 23. NOT GIVEN 24. FALSE 25. TRUE 26. NOT GIVEN

作业 1 (必做) 《剑桥 7》P44-47

剑桥 7 -Test 2- reading passage 2

The True Cost of Food

A For more than forty years the cost of food has been rising. It has now reached a point where a growing number of people believe that it is far too high, and that bringing it down will be one of the great challenges of the twenty first century. That cost, however, is not in immediate cash. In the west at least, most food is now far cheaper to buy in relative terms than it was in 1960. The cost is in the collateral damage of the very methods of food production that have made the food cheaper: in the pollution of water, the enervation of soil, the destruction of wildlife, the harm to animal welfare and the threat to human health caused by modern industrial agriculture.

B First mechanisation, then mass use of chemical fertilisers and pesticides, then monocultures, then battery rearing of livestock, and now genetic engineering - the onward march of intensive farming has seemed unstoppable in the last half-century, as the yields of produce have soared. But the damage it has caused has been colossal. In Britain, for example, many of our best-loved farmland birds, such as the skylark, the grey partridge, the lapwing and the corn bunting, have vanished from huge stretches of countryside, as have even more wild flowers and insects. This is a direct result of the way we have produced our food in the last four decades. Thousands of miles of hedgerows, thousands of ponds, have disappeared from the landscape. The faecal filth of salmon farming has driven wild salmon from many of the sea lochs and rivers of Scotland. Natural soil fertility is dropping in many areas because of continuous industrial fertiliser and pesticide use, while the growth of algae is increasing in lakes because of the fertiliser run-off.

C Put it all together and it looks like a battlefield, but consumers rarely make the connection at the dinner table. That is mainly because the costs of all this damage are what economists refer to as externalities: they are outside the main transaction, which is for example producing and selling a field of wheat, and are borne directly by neither producers nor consumers. To many, the costs may not even appear to be financial at all, but merely aesthetic - a terrible shame, but nothing to do with money. And anyway they, as consumers of food, certainly aren't paying for it, are they?

D But the costs to society can actually be quantified and, when added up, can amount to staggering sums. A remarkable exercise in doing this has been carried out by one of the world's leading thinkers on the future of agriculture, Professor Jules Pretty, Director of the Centre for Environment and Society at the University of Essex. Professor Pretty and his colleagues calculated the externalities of British agriculture for one particular year. They added up the costs of repairing the damage it caused, and came up with a total figure of £ 2,343m. This is equivalent to £ 208 for every hectare of arable land and permanent pasture, almost as much again as the total government and EU spend on British farming in that year. And according to Professor Pretty, it was a conservative estimate.

E The costs included: £ 120m for removal of pesticides; £ 16m for removal of nitrates; £ 55m for removal of phosphates and soil; £ 23m for the removal of the bug cryptosporidium from drinking water by water companies; £ 125m for damage to wildlife habitats, hedgerows and dry stone walls; £ 1,113m from emissions of gases likely to contribute to climate change; £ 106m from soil erosion and organic carbon losses; £ 169m from food poisoning; and £ 607m from cattle disease. Professor Pretty draws a simple but memorable conclusion from all this: our food bills are actually threefold. We are paying for our supposedly cheaper food in three separate ways: once over the counter, secondly through our taxes, which provide the enormous subsidies propping up modern intensive farming, and thirdly to clean up the mess that modern farming leaves behind.

F So can the true cost of food be brought down? Breaking away from industrial agriculture as the solution to hunger may be very hard for some countries, but in Britain, where the immediate need to supply food is less urgent, and the costs and the damage of intensive farming have been clearly seen, it may be more feasible. The government needs to create sustainable, competitive and diverse farming and food sectors,

which will contribute to a thriving and sustainable rural economy, and advance environmental, economic, health, and animal welfare goals.

G But if industrial agriculture is to be replaced, what is a viable alternative? Professor Pretty feels that organic farming would be too big a jump in thinking and in practices for many farmers. Furthermore, the price premium would put the produce out of reach of many poorer consumers. He is recommending the immediate introduction of a 'Greener Food Standard', which would push the market towards more sustainable environmental practices than the current norm, while not requiring the full commitment to organic production. Such a standard would comprise agreed practices for different kinds of farming, covering agrochemical use, soil health, land management, water and energy use, food safety and animal health. It could go a long way, he says, to shifting consumers as well as farmers towards a more sustainable system of agriculture.

Question 14-17

Reading Passage 2 has seven paragraphs, **A-G**.

Which paragraph contains the following information?

*Write the correct letter, **A-G**, in boxes 14-17 on your answer sheet.*

NB You may use any letter more than once.

14. a cost involved in purifying domestic water
15. the stages in the development of the farming industry
16. the term used to describe hidden costs
17. one effect of chemicals on water sources

Question 18-21

Do the following statements agree with the information given in Reading Passage 2?

In boxes 18-21 on your answer sheet, write

YES if the statement agree with the claims of the writer

NO if the statement contradicts the claims of the writer

NOT GIVEN if it is impossible to say what the writer thinks about this

18 Several species of wildlife in the British countryside are declining.

19 The taste of food has deteriorated in recent years.

20 The financial costs of environmental damage are widely recognised.

21 One of the costs calculated by Professor Pretty was illness caused by food.

Question 22-26

Complete the summary below.

Choose **NO MORE THAN THREE WORDS** from the passage for each answer.

Write your answers in boxes 22-26 on your answer sheet.

Professor Pretty concludes that our 22_____ are higher than most people realise, because we make three different types of payment. He feels it is realistic to suggest that Britain should reduce its reliance on 23_____. Although most farmers would be unable to adapt to 24_____, Professor Pretty wants the government to initiate change by establishing what he refers to as a 25_____. He feels this would help to change the attitudes of both 26_____ and_____.

【答案】

14. E 15. B 16. C 17. B

18. TRUE 19. NOT GIVEN 20. FALSE 21. TRUE

22. food bills / costs

23. intensive farming / modern intensive farming

24. organic farming

25. Greener Food Standard

26. consumers ; farmers ;

作业 2 (选做) 《剑桥 8》P22-25

剑桥 8 -Test 2- reading passage 2

Question 14-19

Reading Passage 2 has seven paragraphs, A-G.

Choose the correct heading for paragraphs A and C-G from the list of heading below.

Write the correct number, i-x, in boxes 14-19 on your answer sheet.

List of headings

- i Disobeying FAA regulations
- ii Aviation disaster prompts action
- iii Two coincidental developments
- iv Setting altitude zones
- v An oversimplified view
- vi Controlling pilots' licences
- vii Defining airspace categories
- viii Setting rules to weather conditions
- ix Taking off safely
- x First steps towards ATC

Example
Paragraph B

Answer
x

Air Traffic Control in the USA

A An accident that occurred in the skies over the Grand Canyon in 1956 resulted in the establishment of the Federal Aviation Administration (FAA) to regulate and oversee the operation of aircraft in the skies over the United States, which were becoming quite congested. The resulting structure of air traffic control has greatly increased the safety of flight in the

United States, and similar air traffic control procedures are also in place over much of the rest of the world.

B Rudimentary air traffic control (ATC) existed well before the Grand Canyon disaster. As early as the 1920s, the earliest air traffic controllers manually guided aircraft in the vicinity of the airports, using lights and flags, while beacons and flashing lights were placed along cross-country routes to establish the earliest airways. However, this purely visual system was useless in bad weather, and, by the 1930s, radio communication was coming into use for ATC. The first region to have something approximating today's ATC was New York City, with other major metropolitan areas following soon after.

C In the 1940s, ATC centres could and did take advantage of the newly developed radar and improved radio communication brought about by the Second World War, but the system remained rudimentary. It was only after the creation of the FAA that full-scale regulation of America's airspace took place, and this was fortuitous, for the advent of the jet engine suddenly resulted in a large number of very fast planes, reducing pilots' margin of error and practically demanding some set of rules to keep everyone well separated and operating safely in the air.

D Many people think that ATC consists of a row of controllers sitting in front of their radar screens at the nation's airports, telling arriving and departing traffic what to do. This is a very incomplete part of the picture. The FAA realised that the airspace over the United States would at any time have many different kinds of planes, flying for many different purposes, in a variety of weather conditions, and the same kind of structure was needed to accommodate all of them.

E To meet this challenge, the following elements were put into effect. First, ATC extends over virtually the entire United States. In general, from 365m above the ground and higher, the entire country is blanketed by controlled airspace. In certain areas, mainly near airports, controlled airspace extends down to 215m above the ground, and, in the immediate vicinity of an airport, all the way down to the surface. Controlled airspace is that airspace in which FAA regulations apply. Elsewhere, in uncontrolled airspace, pilots are bound by fewer regulations. In this way, the recreational pilot who simply wishes to go flying for a while without all the restrictions imposed by the FAA has only to stay in uncontrolled airspace, below 365m, while the pilot who does want the protection afforded by ATC can easily enter the controlled airspace.

F The FAA then recognised two types of operating environments. In good meteorological conditions, flying would be permitted under Visual Flight Rules (VFR), which suggests a strong reliance on visual cues to maintain an acceptable level of safety. Poor visibility necessitated a set of Instrumental Flight Rules (IFR), under which the pilot relied on altitude and navigational information provided by the plane's instrument panel to fly safely. On a clear day, a pilot in controlled airspace can choose a VFR or IFR flight plan, and the FAA regulations were devised in a way which accommodates both VFR and IFR operations in the same airspace. However, a pilot can only choose to fly IFR if they possess an instrument rating which is above and beyond the basic pilot's license that must also be held.

G Controlled airspace is divided into several different types, designated by letters of the alphabet. Uncontrolled airspace is designated Class F, while controlled airspace below 5,490m above sea level and not in the vicinity of an airport is Class E. All airspace above 5,490m is designated Class A. The reason for the division of Class E and Class A airspace stems from the type of planes operating in them. Generally, Class E airspace is where one finds general aviation aircraft (few of which can climb above 5,490m anyway), and commercial turboprop aircraft. Above 5,490m is the realm of the heavy jets, since jet engines operate more efficiently at higher altitudes. The difference between Class E and A airspace is that in Class A, all operations are IFR, and pilots must be instrument-rated, that is, skilled and licensed in aircraft instrumentation. This is because ATC control of the entire space is essential. Three other types of airspace, Classes D, C and B, govern the vicinity of airports. These correspond roughly to small municipal, medium-sized metropolitan and major metropolitan airports respectively, and encompass an increasingly rigorous set of regulations. For example, all a VFR pilot has to do to enter Class C airspace is establish two-way radio contact with ATC. No explicit permission from ATC to enter is needed, although the pilot must continue to obey all regulations governing VFR flight. To enter Class B airspace, such as on approach to a major metropolitan airport, an explicit ATC clearance is required. The private pilot who cruises without permission into this airspace risks losing their license.

Question 20-26

Do the following statements agree with the information given in Reading Passage 2?

In boxes 20-26 on your answer sheet, write

TRUE	<i>if the statement agree with the claims of the writer</i>
FALSE	<i>if the statement contradicts the claims of the writer</i>
NOT GIVEN	<i>if it is impossible to say what the writer thinks about this</i>

20 The FAA was created as a result of the introduction of the jet engine.

21 Air Traffic Control started after the Grand Canyon crash in 1956.

22 Beacons and flashing lights are still used by ATC today.

23 Some improvements were made in radio communication during World War II.

24 Class F airspace is airspace which is below 365m and not near airports.

25 All aircraft in Class E airspace must use IFR.

26 A pilot entering Class C airspace is flying over an average-sized city.

【答案】

14. II 15. III 16. V 17. IV 18. VII 19. VI
20. FALSE 21. FALSE 22. NOT GIVEN 23. TRUE 24. TRUE 25. FALSE 26. TRUE

注：以上文章均选自《剑桥雅思系列》，仅供学习使用。