
2_全局配置加载

2522字

从本节教程开始，我们将对 RPC 框架进行一系列的扩展。

在 RPC 框架运行的过程中，会涉及到很多的配置信息，比如注册中心的地址、序列化方式、网络

服务器端口号等等。

之前的简易版 RPC 项目中，我们是在程序里硬编码了这些配置，不利于维护。

而且 RPC 框架是需要被其他项目作为服务提供者或者服务消费者引入的，我们应当允许引入框架

的项目通过编写配置文件来 自定义配置。并且一般情况下，服务提供者和服务消费者需要编写相同

的 RPC 配置。

因此，我们需要一套全局配置加载功能。能够让 RPC 框架轻松地从配置文件中读取配置，并且维

护一个全局配置对象，便于框架快速获取到一致的配置。

首先我们梳理需要的配置项，刚开始就一切从简，只提供以下几个配置项即可：

name 名称

version 版本号

serverHost 服务器主机名

serverPort 服务器端口号

后续随着框架功能的扩展，我们会不断地新增配置项，还可以适当地对配置项进行分组。

比如以下是一些常见的 RPC 框架配置项，仅做了解即可：

 <https://www.code-nav.cn/post/1816420035119853569> 仅供 编程导航 内部成员观看，请

勿对外分享！

一、需求分析

二、设计方案

配置项

●

●

●

●

https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569

2522字

1. 注册中心地址：服务提供者和服务消费者都需要指定注册中心的地址，以便进行服务的注册和

发现。

2. 服务接口：服务提供者需要指定提供的服务接口，而服务消费者需要指定要调用的服务接口。

3. 序列化方式：服务提供者和服务消费者都需要指定序列化方式，以便在网络中传输数据时进行

序列化和反序列化。

4. 网络通信协议：服务提供者和服务消费者都需要选择合适的网络通信协议，比如 TCP、HTTP

等。

5. 超时设置：服务提供者和服务消费者都需要设置超时时间，以便在调用服务时进行超时处理。

6. 负载均衡策略：服务消费者需要指定负载均衡策略，以决定调用哪个服务提供者实例。

7. 服务端线程模型：服务提供者需要指定服务端线程模型，以决定如何处理客户端请求。

感兴趣的同学可以了解下 Dubbo RPC 框架的配置项，包括应用配置、注册中心配置、服务配置

等。

参考 Dubbo：https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-

manual/config/api/ <https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-

sdk/reference-manual/config/api/>

任意项目引入 Dubbo 依赖后，就可以查看到 ﻿ApplicationConfig﻿ 配置类，如图：

https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/config/api/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/config/api/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/config/api/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/config/api/

2522字

如何读取配置文件呢？这里可以使用 Java 的 Properties 类自行编写，但是更推荐使用一些第三方

工具库，比如 Hutool 的 Setting 模块，可以直接读取指定名称的配置文件中的部分配置信息，并

且转换成 Java 对象，非常方便。

参考官方文档：https://doc.hutool.cn/pages/Props/。

<https://doc.hutool.cn/pages/Props/。>

一般情况下，我们读取的配置文件名称为 ﻿application.properties﻿，还可以通过指定文件名称

后缀的方式来区分多环境，比如 ﻿application-prod.properties﻿ 表示生产环境、 ﻿applicati

on-test.properties﻿ 表示测试环境。

1）先新建 ﻿yu-rpc-core﻿ 模块，后面的 RPC 项目开发及扩展均在该项目进行。

可以直接复制 ﻿yu-rpc-easy﻿ 的代码并改名，就得到了这个项目。

2）然后给项目引入日志库和单元测试依赖，便于后续开发：

读取配置文件

三、开发实现

1、项目初始化

https://doc.hutool.cn/pages/Props/%E3%80%82
https://doc.hutool.cn/pages/Props/%E3%80%82
https://doc.hutool.cn/pages/Props/%E3%80%82

2522字

3）将 ﻿example-consumer﻿ 和 ﻿example-provider﻿ 项目引入的 RPC 依赖都替换成 ﻿yu-rpc-c

ore﻿，代码如下：

1）在 config 包下新建配置类 ﻿RpcConfig﻿，用于保存配置信息。

可以给属性指定一些默认值，完整代码如下：

2、配置加载

<!-- https://mvnrepository.com/artifact/ch.qos.logback/logback-classic -->
<dependency>
 <groupId>ch.qos.logback</groupId>

 <artifactId>logback-classic</artifactId>

 <version>1.3.12</version>

</dependency>

<dependency>
 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>RELEASE</version>

 <scope>test</scope>

</dependency>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

<dependency>
 <groupId>com.yupi</groupId>

 <artifactId>yu-rpc-core</artifactId>

 <version>1.0-SNAPSHOT</version>

</dependency>

1
2
3
4
5
6
7
8
9

2522字

2）在 utils 包下新建工具类 ﻿ConfigUtils﻿，作用是读取配置文件并返回配置对象，可以简化调

用。

工具类应当尽量通用，和业务不强绑定，提高使用的灵活性。比如支持外层传入要读取的配置内容

前缀、支持传入环境等。

完整代码如下：

package com.yupi.yurpc.config;

import lombok.Data;

/**
 * RPC 框架配置
 */
@Data
public class RpcConfig {

 /**
 * 名称
 */
 private String name = "yu-rpc";

 /**
 * 版本号
 */
 private String version = "1.0";

 /**
 * 服务器主机名
 */
 private String serverHost = "localhost";

 /**
 * 服务器端口号
 */
 private Integer serverPort = 8080;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

2522字

之后，调用 ﻿ConfigUtils﻿ 的静态方法就能读取配置了。

3）在 constant 包中新建 ﻿RpcConstant﻿ 接口，用于存储 RPC 框架相关的常量。

比如默认配置文件的加载前缀为 ﻿rpc﻿：

package com.yupi.yurpc.utils;

import cn.hutool.core.util.StrUtil;
import cn.hutool.setting.dialect.Props;

/**
 * 配置工具类
 */
public class ConfigUtils {

 /**
 * 加载配置对象
 *
 * @param tClass
 * @param prefix
 * @param <T>
 * @return
 */
 public static <T> T loadConfig(Class<T> tClass, String prefix) {
 return loadConfig(tClass, prefix, "");
 }

 /**
 * 加载配置对象，支持区分环境
 *
 * @param tClass
 * @param prefix
 * @param environment
 * @param <T>
 * @return
 */
 public static <T> T loadConfig(Class<T> tClass, String prefix, String env
 StringBuilder configFileBuilder = new StringBuilder("application");
 if (StrUtil.isNotBlank(environment)) {
 configFileBuilder.append("-").append(environment);
 }
 configFileBuilder.append(".properties");
 Props props = new Props(configFileBuilder.toString());
 return props.toBean(tClass, prefix);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

2522字

可以读取到类似下面的配置：

RPC 框架中需要维护一个全局的配置对象。在引入 RPC 框架的项目启动时，从配置文件中读取配

置并创建对象实例，之后就可以集中地从这个对象中获取配置信息，而不用每次加载配置时再重新

读取配置、并创建新的对象，减少了性能开销。

使用设计模式中的 单例模式，就能够很轻松地实现这个需求了。

一般情况下，我们会使用 holder 来维护全局配置对象实例。在我们的项目中，可以换一个更优雅

的命名，使用 ﻿RpcApplication﻿ 类作为 RPC 项目的启动入口、并且维护项目全局用到的变量。

完整代码如下：

3、维护全局配置对象

package com.yupi.yurpc.constant;

/**
 * RPC 相关常量
 *
 * @author 程序员鱼皮

 * @learn 鱼皮的编程宝典

 * @from 编程导航学习圈

 */
public interface RpcConstant {

 /**
 * 默认配置文件加载前缀
 */
 String DEFAULT_CONFIG_PREFIX = "rpc";
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

rpc.name=yurpc
rpc.version=2.0
rpc.serverPort=8081

1
2
3

2522字

package com.yupi.yurpc;

import com.yupi.yurpc.config.RpcConfig;
import com.yupi.yurpc.constant.RpcConstant;
import com.yupi.yurpc.utils.ConfigUtils;
import lombok.extern.slf4j.Slf4j;

/**
 * RPC 框架应用
 * 相当于 holder，存放了项目全局用到的变量。双检锁单例模式实现
 */
@Slf4j
public class RpcApplication {

 private static volatile RpcConfig rpcConfig;

 /**
 * 框架初始化，支持传入自定义配置
 *
 * @param newRpcConfig
 */
 public static void init(RpcConfig newRpcConfig) {
 rpcConfig = newRpcConfig;
 log.info("rpc init, config = {}", newRpcConfig.toString());
 }

 /**
 * 初始化
 */
 public static void init() {
 RpcConfig newRpcConfig;
 try {
 newRpcConfig = ConfigUtils.loadConfig(RpcConfig.class, RpcConstan
 } catch (Exception e) {
 // 配置加载失败，使用默认值
 newRpcConfig = new RpcConfig();
 }
 init(newRpcConfig);
 }

 /**
 * 获取配置
 *
 * @return
 */
 public static RpcConfig getRpcConfig() {
 if (rpcConfig == null) {
 synchronized (RpcApplication.class) {
 if (rpcConfig == null) {
 init();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

2522字

上述代码其实就是 ﻿双检锁单例模式﻿ 的经典实现，支持在获取配置时才调用 init 方法实现懒加

载。

为了便于扩展，还支持自己传入配置对象；如果不传入，则默认调用前面写好的 ConfigUtils 来加

载配置。

以后 RPC 框架内只需要写一行代码，就能正确加载到配置：

在 ﻿example-consumer﻿ 项目的 resources 目录下编写配置文件 ﻿application.properties﻿，

代码如下：

如图：

四、测试

1、测试配置文件读取

 }
 }
 }
 return rpcConfig;
 }
}

51
52
53
54
55
56

RpcConfig rpc = RpcApplication.getRpcConfig();1

rpc.name=yurpc
rpc.version=2.0
rpc.serverPort=8081

1
2
3

2522字

创建 ﻿ConsumerExample﻿ 作为扩展后 RPC 项目的示例消费者类，测试配置文件读取。

代码如下：

能够正确输出配置。

/**
 * 简易服务消费者示例
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public class ConsumerExample {

 public static void main(String[] args) {
 RpcConfig rpc = ConfigUtils.loadConfig(RpcConfig.class, "rpc");
 System.out.println(rpc);
 ...
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

2522字

在 ﻿example-provider﻿ 项目中创建 ﻿ProviderExample﻿ 服务提供者示例类，能够根据配置动

态地在不同端口启动 web 服务。

代码如下：

提供以下扩展思路，可自行实现：

1）支持读取 application.yml、application.yaml 等不同格式的配置文件。

2、测试全局配置对象加载

五、扩展

package com.yupi.example.provider;

import com.yupi.example.common.service.UserService;
import com.yupi.yurpc.RpcApplication;
import com.yupi.yurpc.registry.LocalRegistry;
import com.yupi.yurpc.server.HttpServer;
import com.yupi.yurpc.server.VertxHttpServer;

/**
 * 简易服务提供者示例
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public class EasyProviderExample {

 public static void main(String[] args) {
 // RPC 框架初始化
 RpcApplication.init();

 // 注册服务
 LocalRegistry.register(UserService.class.getName(), UserServiceImpl.c

 // 启动 web 服务
 HttpServer httpServer = new VertxHttpServer();
 httpServer.doStart(RpcApplication.getRpcConfig().getServerPort());
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2Ff808512aa4b78b3a8dec6bb7

2522字

2）支持监听配置文件的变更，并自动更新配置对象。

参考思路：使用 Hutool 工具类的 ﻿props.autoLoad()﻿ 可以实现配置文件变更的监听和自动加

载。

3）配置文件支持中文。

参考思路：需要注意编码问题

4）配置分组。后续随着配置项的增多，可以考虑对配置项进行分组。

参考思路：可以通过嵌套配置类实现。

https://service.weibo.com/share/share.php?url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2Ff808512aa4b78b3a8dec6bb70729927b&pic=null&title=2_%E5%85%A8%E5%B1%80%E9%85%8D%E7%BD%AE%E5%8A%A0%E8%BD%BD

