
3_接口_Mock

1681字

RPC 框架的核心功能是调用其他远程服务。但是在实际开发和测试过程中，有时可能无法直接访问

真实的远程服务，或者访问真实的远程服务可能会产生不可控的影响，例如网络延迟、服务不稳定

等。在这种情况下，就需要使用 mock 服务来模拟远程服务的行为，以便进行接口的测试、开发和

调试。

mock 是指模拟对象，通常用于测试代码中，特别是在单元测试中，便于我们跑通业务流程。

举个例子，用户服务要调用订单服务，伪代码如下：

如果订单服务还没上线，那么这个流程就跑不通，只能先把调用订单服务的代码注释掉。

但如果给 orderService 设置一个模拟对象，调用它的 order 方法时，随便返回一个值，就能继续

执行后续代码，这就是 mock 的作用。

虽然 mock 服务并不是 RPC 框架的核心能力，但是它的开发成本并不高。而且给 RPC 框架支持

mock 后，开发者就可以轻松调用服务接口、跑通业务流程，不必依赖真实的远程服务，提高使用

体验，何乐而不为呢？

我们希望能够用最简单的方式 —— 比如一个配置，就让开发者使用 mock 服务。

 <https://www.code-nav.cn/post/1816420035119853569> 仅供 编程导航 内部成员观看，请

勿对外分享！

一、需求分析

什么是 Mock？

为什么要支持 Mock？

class UserServiceImpl {

 void test() {
 doSomething();
 orderService.order();
 doSomething();
 }
}

1
2
3
4
5
6
7
8

https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569

1681字

前面也提到了，mock 的本质就是为要调用的服务创建模拟对象。

如何创建模拟对象呢？

在 RPC 项目第一期中，我们就提到了一种动态创建对象的方法 —— 动态代理。之前是通过动态代

理创建远程调用对象。同理，我们通过动态代理创建一个 调用方法时返回固定值 的对象，不就好

了？

1）我们可以支持开发者通过修改配置文件的方式开启 mock，那么首先给全局配置类 ﻿RpcConfi

g﻿ 新增 mock 字段，默认值为 false。

修改的代码如下：

2）在 Proxy 包下新增 ﻿MockServiceProxy﻿ 类，用于生成 mock 代理服务。

在这个类中，需要提供一个根据服务接口类型返回固定值的方法。

完整代码如下：

二、设计方案

三、开发实现

@Data
public class RpcConfig {
 ...

 /**
 * 模拟调用
 */
 private boolean mock = false;
}

1
2
3
4
5
6
7
8
9

1681字

package com.yupi.yurpc.proxy;

import lombok.extern.slf4j.Slf4j;

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;

/**
 * Mock 服务代理（JDK 动态代理）
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
@Slf4j
public class MockServiceProxy implements InvocationHandler {

 /**
 * 调用代理
 *
 * @return
 * @throws Throwable
 */
 @Override
 public Object invoke(Object proxy, Method method, Object[] args) throws T
 // 根据方法的返回值类型，生成特定的默认值对象
 Class<?> methodReturnType = method.getReturnType();
 log.info("mock invoke {}", method.getName());
 return getDefaultObject(methodReturnType);
 }

 /**
 * 生成指定类型的默认值对象（可自行完善默认值逻辑）
 *
 * @param type
 * @return
 */
 private Object getDefaultObject(Class<?> type) {
 // 基本类型
 if (type.isPrimitive()) {
 if (type == boolean.class) {
 return false;
 } else if (type == short.class) {
 return (short) 0;
 } else if (type == int.class) {
 return 0;
 } else if (type == long.class) {

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1681字

在上述代码中，通过 ﻿getDefaultObject﻿ 方法，根据代理接口的 class 返回不同的默认值，比如

针对 boolean 类型返回 false、对象类型返回 null 等。

3）给 ﻿ServiceProxyFactory﻿ 服务代理工厂新增获取 mock 代理对象的方法 getMockProx

y﻿。可以通过读取已定义的全局配置 ﻿mock﻿ 来区分创建哪种代理对象。

修改 ServiceProxyFactory，完整代码如下：

 return 0L;
 }
 }
 // 对象类型
 return null;
 }
}

51
52
53
54
55
56
57

1681字

package com.yupi.yurpc.proxy;

import com.yupi.yurpc.RpcApplication;

import java.lang.reflect.Proxy;

/**
 * 服务代理工厂（用于创建代理对象）
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public class ServiceProxyFactory {

 /**
 * 根据服务类获取代理对象
 *
 * @param serviceClass
 * @param <T>
 * @return
 */
 public static <T> T getProxy(Class<T> serviceClass) {
 if (RpcApplication.getRpcConfig().isMock()) {
 return getMockProxy(serviceClass);
 }

 return (T) Proxy.newProxyInstance(
 serviceClass.getClassLoader(),
 new Class[]{serviceClass},
 new ServiceProxy());
 }

 /**
 * 根据服务类获取 Mock 代理对象
 *
 * @param serviceClass
 * @param <T>
 * @return
 */
 public static <T> T getMockProxy(Class<T> serviceClass) {
 return (T) Proxy.newProxyInstance(
 serviceClass.getClassLoader(),
 new Class[]{serviceClass},
 new MockServiceProxy());
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1681字

有些视频教程是把 mock 的逻辑写在之前的远程调用动态代理中，我会建议大家单独针对 mock 的

场景写一套新的动态代理和代理工厂，不要和真实请求的代理逻辑混在一起。

1）可以在 ﻿example-common﻿ 模块的 UserService 中写个具有默认实现的新方法。等下需要调用

该方法来测试 mock 代理服务是否生效，即查看调用的是模拟服务还是真实服务。

代码如下：

2）修改示例服务消费者模块中的 ﻿application.properties﻿ 配置文件，将 mock 设置为

true：

四、测试

package com.yupi.example.common.service;

import com.yupi.example.common.model.User;

/**
 * 用户服务
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public interface UserService {

 /**
 * 获取用户
 *
 * @param user
 * @return
 */
 User getUser(User user);

 /**
 * 新方法 - 获取数字
 */
 default short getNumber() {
 return 1;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1681字

3）修改 ﻿ConsumerExample﻿ 类，编写调用 ﻿userService.getNumber﻿ 的测试代码。

代码如下：

应该能看到输出的结果值为 0，而不是 1，说明调用了 ﻿MockServiceProxy﻿ 模拟服务代理。当然

也可以通过 Debug 的方式进行验证。

rpc.name=yurpc
rpc.version=2.0
rpc.mock=true

1
2
3

package com.yupi.example.consumer;

import com.yupi.example.common.model.User;
import com.yupi.example.common.service.UserService;
import com.yupi.yurpc.proxy.ServiceProxyFactory;

/**
 * 简易服务消费者示例
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public class ConsumerExample {

 public static void main(String[] args) {
 // 获取代理
 UserService userService = ServiceProxyFactory.getProxy(UserService.cl
 User user = new User();
 user.setName("yupi");
 // 调用
 User newUser = userService.getUser(user);
 if (newUser != null) {
 System.out.println(newUser.getName());
 } else {
 System.out.println("user == null");
 }
 long number = userService.getNumber();
 System.out.println(number);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2Ff9a635aac656b761c6970f860

1681字

1）完善 Mock 的逻辑，支持更多返回类型的默认值生成。

参考思路：使用 Faker 之类的伪造数据生成库，来生成默认值。

五、扩展

https://service.weibo.com/share/share.php?url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2Ff9a635aac656b761c6970f860b5ac612&pic=null&title=3_%E6%8E%A5%E5%8F%A3_Mock

