5073%

4_FFHlitaaS_SPI_tlE!

Ut JRIESAn <https://www.code-nav.cn/post/1816420035119853569> WERRLEE,
sz INET|
BAIDE!

—. BRI

EFE—DHED, BRI TFRIERIER: TieRIBEREL, B RSERIEHE. ™
Java MREFEE VM EFRY, NREEEMUEFEFRA. BEERSTHTER, B
BEHITFIIAIRFS L.

B RS 7T BRANFSIEEEO, HEBESI 7ET Java REFFICRIFSIEE. BENT
— 7RI RPCHESR, FANEERELIT 3 Majik:

1. BIREEFRIFFEREIA?
2. SMENLERRERRAYFT A B IEEE R Itas?
3. AMANLEERESRAIFTAEZ B CERIFYItas?

ATERE, Bl IRURARRIX L EIE,

=, TR E

HRDHTIX =/NEIRERISEIL TS 2.

1. FFEERSERAR

HAMERY "B Flitss, TLARERESHIMEE. BEE/NIFIIER, XFReE
IR HtSeRk RPC AUERFINMAL,

ZEIBATHE, BAMER Java RERFUCIHIFSIEE, BXRVERIFN, HE EEAERE
MEROFEFUCST, Ebdn JSON, Hessian, Kryo, protobuf £,

ERFFICHNIEL

https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569

1) JSON

- ZiEtr, NEtER, ETASEEE.
- BIEESZR 2, JVFFERmIZIES#EE JSON RURRTAIERE.

© FHCIERIEUREERIERA, EJ9 JSON ERXASIFEEE, FEFMIFRRE. &
MIEIRLEA.

© FRERIFHIANIES R AOEUREFNEIAS |, TRESEIERE TIEEE FFLRL.

2) Hessian: https://hessian.caucho.com/ <https://hessian.caucho.com/>

- ZHEIFIME, FRAIERIEIRRRY), WSEEERS.
© XFHSIES, ERTOHIASTRIIRSEA.

- 488 JSON BEE, EANEEBISRER N ZHFIET.
o XERWNIASCIR Serializable #20, BREI T I FFICHINNSSEE,

3) Kryo: https://github.com/EsotericSoftware/kryo
<https://github.com/EsotericSoftware/kryo>

- SR, BRI FIIMLEREER,
s ZHEEAS | BIBRENFIIEE, ERTEZNXNSREA,
« FTELH Serializable #0, TR IS,

- AEBIES, RERT Java,
- RIS A B R, ASEEFE.

4) Protobuf:

« BRNTHEIFINE, FRINCERIEIRER/.
- BiEST, FERMT SMESHISCIHLE.
© SFFRAMEAIERD / BEFRE .

5073%

https://hessian.caucho.com/
https://hessian.caucho.com/
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo

5073%

- BEEENER, TELENEESEIERSI.
© MRHIFFISTAZIRE, METEL.

XIVMFEFI AR, ARSIEHEITT JSON T, AHIEF, BRESH ARSI JSON,
Kryo # Hessian iX=FfhFF5I{L 28,

2, DhS(ERFTILER
ZBUBATRIERASHIERID T RFFUMES, tEan:

1 Serializer serializer = new JdkSerializer();

MRFFREEESRNFINFIILRE, MOERFTERI LA, KT !

BRERT, Nz LBYEE RIEEERNFyItas. EERFY IR, RIFECENIRE
RERIFFFILESSEAIRNAT.,

2% Dubbo BHaFFMLIYAYGE: https://cn.dubbo.apache.org/zh-
cn/overview/mannual/java-sdk/reference-manual/serialization/hessian/
<https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-

manual/serialization/hessian/>

XMEEHAE, BRMNRAFTEEN— FIMEAR => FraIiiEN 2 8 Map, AE
HRIEEFRM Map F3REXISRENTE],

3. BEXFF5IEE
MRFFAETEERRIMEENBORFSILE, BEACEN—MIFFICEIE, ERaEY
RAVSITAGERES, FREANE?

FEERREE: RERHIAY RPC {EZREE5 SRR BEN SRR, REINEIXNZE, /EA
Serializer FE5{¢ 281z ORISCHLRAT,

(B2 AASEIXMNE(ETE?

XMBEHAVEI— MRS, B2 Java FRIEERE —— SPI A,

https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/serialization/hessian/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/serialization/hessian/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/serialization/hessian/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/serialization/hessian/
https://cn.dubbo.apache.org/zh-cn/overview/mannual/java-sdk/reference-manual/serialization/hessian/

5073%

+42 SPI?
SPI (Service Provider Interface) BRSSIRAHZEOIRE Java FUH, FERTSCIMERWFFAMIES
Wi R,

SPI lEI R iRS IRHE BT EREE XS B CRSSINEMEIR ST, RRRF BT REIE
SIRSINEIX LS, MABRIESURIGTESRAINE, NMSEI T RERIEE. RS 7Y Rit.

—MEEEYRY SPI A RRE JDBC (Java HUEEEREF) , ARVEHEERGEFFAE T LUER
JDBC FE, AaEHB ChIEIRERIER.

A, FAVERRER Java FARIEZES, JLFERERZIT SPI#LE, kil Serviet g8, HEIE
28 ORM #EZ8, Spring 1228, FRLAXRE Java AR EVRERI— P EEISE!

Sn{asEIR SPI?

PREFEIMFNE E XL,

YL
H3L Java RELIRM T SPI HIHIMEXE APl 20, sTLIBEREFER, XMAREE.

1) B resources HEBFRTEIZE META-INF/services BFE, HEEE—RBFRANET
PRGOS,

v B resources
V META-INF

services

2) EXMHHIEEE CEFRIRIEOSCIIER FRRXIRE, WE:

com.yupi.yurpc.serializer.JdkSerializer

3) BEEEARFERNER ServiceLoader aiFSINEdEERZOMNLIMZE, ABUIT:

1 /] fRERIIME

2 Serializer serializer = null;

3 ServicelLoader<Serializer> serviceloader = ServicelLoader.load(Serializer.class)
4 = for (Serializer service : serviceloader) {

5 serializer = service;

6 }

BRSBTS RENEIR A UG P mSRISEINZENISR, e —MERRIA.

BEENX SPI £

R SPI ERER, BERNREVEEF SN AREANZOSLIZE, MR EEEZREPIsSEFER
B—N7T, EEEEIMEA] "BUEERNEEEFYIEE" IEK,

FRLEAIEEBSEN SPI HFIHISCI, REREiRIER B INEE2ER0T],
EVAMISEENGN FECE S, BEMBEEI— FHlib 24 => Frb s ik g pmst, 25
A e LRI P B BRI T M 2R B RS NS S EL TR TA?

jdk=com.yupi.yurpc.serializer.JdkSerializer
hessian=com.yupi.yurpc.serializer.HessianSerializer
json=com.yupi.yurpc.serializer.JsonSerializer

A w N R

kryo=com.yupi.yurpc.serializer.KryoSerializer

=, F&REM

BT AERE, BlIREORIFASCIL,

1. ZHEFFIEERSEIR

BAIESBISEI JSON, Kryo #0 Hessian iX=fERAFFILEE,
1) B5AIRBR pom.xml 55 | \ kil

5073%

1 <!-- JFHtk -->

2 <!-- https://mvnrepository.com/artifact/com.caucho/hessian -->
3 = <dependency>

4 <groupId>com.caucho</groupId>

5

6 <artifactId>hessian</artifactId>

7

8 <version>4.0.66</version>

9
10 </dependency>
11
12 <!-- https://mvnrepository.com/artifact/com.esotericsoftware/kryo -->
13 = <dependency>
14 <groupId>com.esotericsoftware</groupId>
15
16 <artifactId>kryo</artifactId>
17
18 <version>5.6.0</version>
19
20 </dependency>
21

2) AFREFFLRRE serializer HHRFISLIX=FFFILEE, IWAARSEM LA, B
EFA Al ZEpBIE], AEEFICHES.

JSON F5U{tes

JSON FH{BRUSCIERTE 2, B E— XSGR MR, thin Object #AERFIL
EaERIEE,

KRBT

5073%

5073

W 00 N O UV W N B

u DD DM DMDDEDAEDNDDWWWWWWWWWWNNRNIDINNNNDNNNIRRPRRRPRPRPRPRRPLRPR
® VWO N O UV DN WNRO OWWONOOUDNWNR® OONOUDNWDNRO® OOoNOUDMNWNIERO®

package com.yupi.yurpc.serializer;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.yupi.yurpc.model.RpcRequest;
import com.yupi.yurpc.model.RpcResponse;

import java.io.IOException;

/**
* Json J¥AIibis

*

* @author + Afji
* @learn %ifi ¥ #i
* @from %fESFHiMIREBR

*/
public class JsonSerializer implements Serializer {
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();

@Override
public <T> byte[] serialize(T obj) throws IOException {
return OBJECT_MAPPER.writeValueAsBytes(obj);

@Override
public <T> T deserialize(byte[] bytes, Class<T> classType) throws IOExcep
T obj = OBJECT_MAPPER.readValue(bytes, classType);
if (obj instanceof RpcRequest) {
return handleRequest((RpcRequest) obj, classType);
}
if (obj instanceof RpcResponse) {
return handleResponse((RpcResponse) obj, classType);

}

return obj;

/**
* HT object WIRIEN REWHERR, SBUFIMLI 2#MEN LinkedHashMap JoiZ#
*
* @param rpcRequest rpc 15K
* @param type KA
* @return {@link T}
* @throws IOException IO
*/
private <T> T handleRequest(RpcRequest rpcRequest, Class<T> type) throws
Class<?>[] parameterTypes = rpcRequest.getParameterTypes();
Object[] args = rpcRequest.getArgs();

51 = /] TEAALEREEASH SR

52 for (int i = @; i < parameterTypes.length; i++) {
53 Class<?> clazz = parameterTypes[i];
54 = [/ WERZRBIAE], 0 E 3 AL B — T 2R Y
55 if (!clazz.isAssignableFrom(args[i].getClass())) {
56 byte[] argBytes = OBJECT_MAPPER.writeValueAsBytes(args[i]);
57 args[i] = OBJECT_MAPPER.readValue(argBytes, clazz);
58 }
59 }
60 return type.cast(rpcRequest);
61 }
62 =
64 * T Object MIEIEX Ro#iERR, SFEUTILE S#1E N LinkedHashMap Joik#t
65 *
66 * @param rpcResponse rpc Wik
67 * @param type KA
68 * @return {@link T}
69 * @throws IOException IO
70 = */
71 private <T> T handleResponse(RpcResponse rpcResponse, Class<T> type) thro
72 /7 AbEE W S E A
73 byte[] dataBytes = OBJECT_MAPPER.writeValueAsBytes(rpcResponse.getDat
74 rpcResponse.setData(OBJECT_MAPPER.readValue(dataBytes, rpcResponse.ge
75 return type.cast(rpcResponse);
76 }
27 1
Kryo F5l{tzs
Kryo ZB2EEAL LM, FRLUEE(SHA Threadlocal fRFENERIEE— MY Kryo XFSRsC
1,
RN T:

5073

1 package com.yupi.yurpc.serializer;
2
3 import com.esotericsoftware.kryo.Kryo;
4 import com.esotericsoftware.kryo.io.Input;
5 import com.esotericsoftware.kryo.io.Output;
6
7 import java.io.ByteArrayInputStream;
8 import java.io.ByteArrayOutputStream;
9
19 = /**
11 * Kryo FHfLa%
12 *
13 * @author f&/F iifa)ji
14
15 * @learn %mfi = i
16
17 * @from 4wfe Skl EERk
18
19 */
20 = public class KryoSerializer implements Serializer {
21 = /**
22 * kryo ZFEANZ4:,] ThreadlLocal {RIEFANLFEHA—1 Kryo
23 */
24 = private static final ThreadLocal<Kryo> KRYO_THREAD_LOCAL = ThreadLocal.wi
25 Kryo kryo = new Kryo();
26 /] WENSHERFINCAFINE, AREEM AR (ATReH 24 iR D
27 kryo.setRegistrationRequired(false);
28 return kryo;
29 })s
30
31 @Override
32 = public <T> byte[] serialize(T obj) {
33 ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStre
34 Output output = new Output(byteArrayOutputStream);
35 KRYO_THREAD LOCAL.get().writeObject(output, obj);
36 output.close();
37 return byteArrayOutputStream.toByteArray();
38 }
39
40 @Override
41 = public <T> T deserialize(byte[] bytes, Class<T> classType) {
42 ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(
43 Input input = new Input(byteArrayInputStream);
44 T result = KRYO_THREAD LOCAL.get().readObject(input, classType);
45 input.close();
46 return result;
47 }
48 }

5073

Hessian [F51{L 28
SCHIEVER EER, TSI T :

1 package com.yupi.yurpc.serializer;

2

3 import com.caucho.hessian.io.HessianInput;

4 import com.caucho.hessian.io.HessianOutput;

5

6 import java.io.ByteArrayInputStream;

7 import java.io.ByteArrayOutputStream;

8 import java.io.IOException;

9
10 = /**
11 * Hessian [FHI{Las
12 *
13 * @author f&/F iifa)ji
14
15 * @learn %ifi5 Hi
16
17 * @from #IESHiAiREIk
18
19 */
20 = public class HessianSerializer implements Serializer {
21 @Override
22 = public <T> byte[] serialize(T object) throws IOException {
23 ByteArrayOutputStream bos = new ByteArrayOutputStream();
24 HessianOutput ho = new HessianOutput(bos);
25 ho.writeObject(object);
26 return bos.toByteArray();
27 }
28
29 @Override
30 = public <T> T deserialize(byte[] bytes, Class<T> tClass) throws IOExceptio
31 ByteArrayInputStream bis = new ByteArrayInputStream(bytes);
32 HessianInput hi = new HessianInput(bis);
33 return (T) hi.readObject(tClass);
34 }
35 }

2, DhS(ERFTILER
U FRFERIGIINIE serializer BT, EF4EPHE.

5073

serializer
HessianSerializer
JdkSerializer
JsonSerializer

KryoSerializer
Serializer

SerializerFactory
SerializerKeys

1) BREXNFIRBNEE, (ERROSCIL
(REEL(IRE

package com.yupi.yurpc.serializer;

1

2

3 = /**

4 * AL ds AL

5 */

6 = public interface SerializerKeys {
7
8
9

String JDK = "jdk";
String JSON = "json";

10 String KRYO = "kryo";

11 String HESSIAN = "hessian";
12

13}

2) EXFFHILERT) .

AR REAUERR, REESRIITFIERERIEREIZ— N EERIR. FrLATRATRTLASE
ARIHEIPRY T80 + BRHHRR Sk eI A BREUFY ML Re I SR AYR(E.

FRAMtEs T UIBaN T, R Map SR4ERF5IEessLH):

5073%

1 package com.yupi.yurpc.serializer;

2

3 import java.util.HashMap;

4 import java.util.Map;

5

6 = /¥*

7 * AT (T 3RBUF S % 50

8 *

9 * @author / nfafi
10

11 * @learn %mfi ¥ iL

12

13 * @from %HESHiAiRERK

14

15 */

16 = public class SerializerFactory {

17

18 = Yk

19 * P A CH T SEIL D

20 */

21 = private static final Map<String, Serializer> KEY_SERIALIZER_MAP = new Has
22 put(SerializerKeys.JDK, new JdkSerializer());

23 put(SerializerKeys.JSON, new JsonSerializer());

24 put(SerializerKeys.KRYO, new KryoSerializer());

25 put(SerializerKeys.HESSIAN, new HessianSerializer());
26 I3

27

28 > /**

29 * BN AL de

30 */

31 private static final Serializer DEFAULT_SERIALIZER = KEY_SERIALIZER MAP.g
32

33 - /**

34 * REX S

35 *

36 * @param key

37 * @return

38 */

39 = public static Serializer getInstance(String key) {
40 return KEY_SERIALIZER_MAP.getOrDefault(key, DEFAULT_SERIALIZER);
41 }
42
43 }

3) E=2RECEZX RpcConfig il FefrritsaicE, KRBT :

5073

5073%

1 = public class RpcConfig {

2

3

4 = /**

5 * RIS

6 */

7 private String serializer = SerializerKeys.JDK;
8 }

4) INSIREUFH MRS,
RERBZENIEFIERRIFI IV ERSDY "R + ENEE" FFREEEIER.
EEWRIE:

« ServiceProxy

 HttpServerHandler

BT

1 // BEFYIMLE
2 final Serializer serializer = SerializerFactory.getInstance(RpcApplication.get

3. BEXFFILES

BAVERBENR SPI HISEH, SRR BEENFIINSRFIEERS.
1) 187 SPI EBEB .

RBEANER] SPI HIFI=NE resources RIFEHRTHI META-INF/services HRE, 31
EMHIFIULERRTLAAANEH], BSO9iEE META-INF/rpc BHR.
HANEATLLE SPI EEEB D AREKANE SPI FIBFBEEN SPI, RBIERAT:
« FAFBEX SPI: META-INF/rpc/custom, FIFAILAMEZER THEEE, NIEBEENAISC
MK,
- RFWE SPI: META-INF/rpc/system, RPC HEZEEHISCINZE, LanFAIZaIFF AT Id

kSerializer ,

XA, FrEEORISEHISERILUBIY SPI #7508, AREAISERED Map SRUEFSCIIE
7.

FNREE—NRRT BEEX S, AEAFNZBIEIFRIFIILES.
X{EZERA com.yupi.yurpc.serializer.Serializer , #0E:
com.yupi.yurpc.serializer.Serializer
This file was explicitly re-assigned to plain text

jdk=com.yupi.yurpc.serializer.JdkSerializer
hessian=com.yupi.yurpc.serializer.HessianSerializer

j@on=com.yuypi.yurpc.serializer.JsonSerializer

kryo=com.yupi.yurpc.serializer.KryoSerializer

KT
1 jdk=com.yupi.yurpc.serializer.JdkSerializer
2 hessian=com.yupi.yurpc.serializer.HessianSerializer
3 json=com.yupi.yurpc.serializer.JsonSerializer
4 kryo=com.yupi.yurpc.serializer.KryoSerializer

2) YRE SpilLoader fNEEE,

BETTESR, RETIENEEFINESIRATTIE.

KEESCIANT

1. F Map RFECNBHNEEER #4 => Lk

2. FEIEERA, ENEMREXM, RIE #4 => LUK (ERFHFMHEE Map #,

3. EMFRENEEATSE, WRIERFENIZOMER, M Map PR ERINAISTHEE, REEER
SPERENBISCIISSIR. AJLAMEHP— I IRELAIET, ST —IRAIRISRNEFPisEEEDA.,

SRR

5073%

5073

O 00 N O UV W N B

u DD DM DMDDEDANDNDDWWWWWWWWWWNNRNDINNNNNNNRRPRRRERRPRRLRPR
® VWO N O UV DN WNRO OVWOONOOULDNWNR® OWONOUDNWNRO® OOoNOUDNWNIERO®

package com.yupi.yurpc.spi;

import
import
import

import
import
import
import
import
import
import
import
import

/**
* SPI
*/

@S1f4j

cn.hutool.core.io.resource.ResourceUtil;
com.yupi.yurpc.serializer.Serializer;
lombok.extern.slf4j.S1f47;

java.
java.
java.
java.
java.
java.
java.
java.
java.

io.BufferedReader;

io.IOException;
io.InputStreamReader;

net.URL;

util.Arrays;

util.HashMap;

util.List;

util.Map;
util.concurrent.ConcurrentHashMap;

IS CGCRFBAE XTI

public class Spiloader {

/**

* IR CINERSS: 04 => (key => LI

*/

private static Map<String, Map<String, Class<?>>> loaderMap = new Concur

/**

* N REBIGAT GEREL new) , KRR => RG], BRFHEX

*/

private static Map<String, Object> instanceCache

/**

* 2% SPI Hk

*/

private static final String RPC_SYSTEM_SPI_DIR =

/**

* M EEX SPT Hx

*/

private static final String RPC_CUSTOM_SPI_DIR =

/**

* AR

*/

private static final String[] SCAN_DIRS =

/**

* FEMBIRKIIF

*/

new ConcurrentHashMap

"META-INF/rpc/system/";

"META-INF/rpc/custom/";

new String[]{RPC_SYSTEM_SPI_DI

51
52 =
53
54
55 =
56
57 =
58
59
60
61
62 =
63
64
65
66
67
68
69

71
72
73 =
74
75
76 =
77
78
79
80
81
82
83 =

85
86 =
87
88
89
90
91
92
93
94 =
95
9%
97
98
99

100

101
5073

pri

/**

F3
*/
pub

/**

*

*

k

*/
pub

/**

*
*
*
*
*/

pub

vate static final List<Class<?>> LOAD CLASS LIST = Arrays.aslList(Seri

TN TR

lic static void loadAll() {

log.info("M#FH SPI");
for (Class<?> aClass : LOAD_CLASS LIST) {

load(aClass);
}
ARIUEEAN 2 T SE A

@param tClass
@param key
@param <T>
@return

lic static <T> T getInstance(Class<?> tClass, String key) {
String tClassName = tClass.getName();
Map<String, Class<?>> keyClassMap = loaderMap.get(tClassName);
if (keyClassMap == null) {
throw new RuntimeException(String.format("SpilLoader FKIN# %s K7
}
if (!keyClassMap.containsKey(key)) {
throw new RuntimeException(String.format("SpilLoader W] %s ANfF1E
}
/7 BRECEE AR S Y
Class<?> implClass = keyClassMap.get(key);
/1 WS AF g dia e 2R A) SE A
String implClassName = implClass.getName();
if (!instanceCache.containsKey(implClassName)) {
try {
instanceCache.put(implClassName, implClass.newInstance());
} catch (InstantiationException | IllegalAccessException e) {
String errorMsg = String.format("%s ZEsefilfb2&Mg", implClassN
throw new RuntimeException(errorMsg, e);

}

return (T) instanceCache.get(implClassName);

JIiES & S e it

@param loadClass
@throws IOException

lic static Map<String, Class<?>> load(Class<?> loadClass) {

5073%

102 log.info("IN#EEMA {3) SPI", loadClass.getName());

103 // AR, HPHEE XK SPT MK m T RS SPI

104 Map<String, Class<?>> keyClassMap = new HashMap<>();

105 for (String scanDir : SCAN_DIRS) {

106 List<URL> resources = ResourceUtil.getResources(scanDir + loadCl
107 /1 BRI B S

108 for (URL resource : resources) {

109 try {

110 InputStreamReader inputStreamReader = new InputStreamRea
111 BufferedReader bufferedReader = new BufferedReader(input
112 String line;

113 while ((line = bufferedReader.readlLine()) != null) {

114 String[] strArray = line.split("=");

115 if (strArray.length > 1) {

116 String key = strArray[0];

117 String className = strArray[1];

118 keyClassMap.put(key, Class.forName(className));
119 }

120 }

121 } catch (Exception e) {

122 log.error("spi resource load error", e);

123 }

124 }

125 }

126 loaderMap.put(loadClass.getName(), keyClassMap);

127 return keyClassMap;

128 }

LR CE3R, EIMEMT loadAll 737%, EFIARE FRSUFRITINR, BELRVEFER. &
#EFERA load 75i%, IRFEINHAEERIR.

IR, ERMCREHIREEE G 2T ResourceUtil.getResources , MAEEBRIEFIRE
IREN., RUNRIEZREAREHEIN, BITASEIERIUEREMN.

3) EXFAILEET .

ZHl, BMEBIET iEmS HashMap kBRI, BT SPIfE, BRIl
79I SPI INEAEERIFFMLERIIR.

SEEARBIT:

1 package com.yupi.yurpc.serializer;
2
3 import com.yupi.yurpc.spi.SpilLoader;
4
5 import java.io.IOException;
6 import java.util.HashMap;
7 import java.util.Map;
8
9 = [k
10 * AR LT (HT3RBUF 580 50
11 *
12 * @author + Afji
13
14 * @learn %ifi ¥ #i
15
16 * @from %fESFHiMIREBR
17
18 */
19 = public class SerializerFactory {
20
21 = static {
22 SpilLoader.load(Serializer.class);
23 }
24
25 = Vaki
26 NN
27 */
28 private static final Serializer DEFAULT_SERIALIZER = new JdkSerializer();
29
39 = /**
31 * RIS
32 *
33 * @param key
34 * @return
35 */
36 = public static Serializer getInstance(String key) {
37 return SpilLoader.getInstance(Serializer.class, key);
38 }
39
40 }

(EREESRIOR, I EXINERS, #i4EA Spiloader By load F53AINE SIS EZONRE
SN, ZERAILUEITIEA getinstance /5 ERBUSEMLIETTSR T,

mq. st

5073

1. SPI pNEeit

{EBIHELE custom 0 system TRY SPI BeE N4, (ERISERBFISCIRIRER, WIFBEHRIEEN
=

EEan N ERYECE :

ERTLAEH a0 i :
1. DRAIER (F7E key) HIRE (FMFE key) HIBR
2. Wi key 1HERNS, BENEEREESRSEE

2, SR
1) EBCEBRBNEFERPIMEPRNEENH, EEABERIFFICEE, a0 hessian :
rpc.name=yurpc

rpc.version=2.0
rpc.mock=false

A w N R

rpc.serializer=hessian

2) AFEHORIEHNEFEMERSE, WIERERIER S RPC iIERHMIMAL,

3. BEXFFIEES

ZE, BIINRELMEEXIFIEE, REEHTUTESE:
1. B5—/\3&3CH Serializer ##£0

2. # custom BR MRS SPI BoEX 4, MNEESSRISCIESE

h. =

1) SEMEZAEMXEIF LR,

SERIR: BTFRIEEERG, EFERYEENGRETSM (Fbid Kryo FBFILE) |, "TLAGE
F ThreadlLocal,

2) FFHtER T AILAERRmNE: (WEXzCERR) RSB RRSIaRsEpl.
S2EBK: BRI\ static EERAIALE.

3) SPI Loader SziFMiine, SRENSCAURT A DNELRIRIATE,

SERR: LR REGIEL.

url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2F5233b6f9410bd90624792ed:

5073

https://service.weibo.com/share/share.php?url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2F5233b6f9410bd90624792ed2c6458a2c&pic=null&title=4_%E5%BA%8F%E5%88%97%E5%8C%96%E5%99%A8%E4%B8%8E_SPI_%E6%9C%BA%E5%88%B6

