
6_注册中心优化

5097字

上节教程中，我们基于 Etcd 完成了基础的注册中心，能够注册和获取服务和节点信息。

但目前系统仅仅是处于可用的程度，还有很多需要解决的问题和可优化点：

1. 数据一致性：服务提供者如果下线了，注册中心需要即时更新，剔除下线节点。否则消费者可

能会调用到已经下线的节点。

2. 性能优化：服务消费者每次都需要从注册中心获取服务，可以使用缓存进行优化。

3. 高可用性：保证注册中心本身不会宕机。

4. 可扩展性：实现更多其他种类的注册中心。

本节教程，鱼皮将带大家实践 4 个注册中心的优化点：

1. 心跳检测和续期机制

2. 服务节点下线机制

3. 消费端服务缓存

4. 基于 ZooKeeper 的注册中心实现

心跳检测（俗称 heartBeat）是一种用于监测系统是否正常工作的机制。它通过定期发送 心跳信号

（请求）来检测目标系统的状态。

如果接收方在一定时间内没有收到心跳信号或者未能正常响应请求，就会认为目标系统故障或不可

用，从而触发相应的处理或告警机制。

 <https://www.code-nav.cn/post/1816420035119853569> 仅供 编程导航 内部成员观看，请

勿对外分享！

一、需求分析

二、注册中心优化

心跳检测和续期机制

心跳检测介绍

https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569
https://www.code-nav.cn/post/1816420035119853569

5097字

心跳检测的应用场景非常广泛，尤其是在分布式、微服务系统中，比如集群管理、服务健康检查

等。

之前有同学问，我们怎么检测自己做的 web 后端是否正常运行呢？

一个最简单的方法，就是写一个心跳检测接口，比如：

然后我们只需要执行一个脚本，定期调用这个接口，如果调用失败，就知道系统故障了。

1）从心跳检测的概念来看，实现心跳检测一般需要 2 个关键：定时、网络请求。

但是使用 Etcd 实现心跳检测会更简单一些，因为 Etcd 自带了 key 过期机制，我们不妨换个思

路：给节点注册信息一个 “生命倒计时”，让节点定期 续期，重置 自己的 倒计时。如果节点已宕

机，一直不续期，Etcd 就会对 key 进行过期删除。

一句话总结：到时间还不续期就是寄了。

在 Etcd 中，我们要实现心跳检测和续期机制，可以遵循如下步骤：

1. 服务提供者向 Etcd 注册自己的服务信息，并在注册时设置 TTL（生存时间）。

2. Etcd 在接收到服务提供者的注册信息后，会自动维护服务信息的 TTL，并在 TTL 过期时删除

该服务信息。

3. 服务提供者定期请求 Etcd 续签自己的注册信息，重写 TTL。

需要注意的是，续期时间一定要小于过期时间，允许一次容错的机会。

方案设计

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
class HealthCheckController {

 // 健康检查接口
 @GetMapping("/actuator/health")
 public String healthCheck() {
 // 在这里可以添加其他健康检查逻辑，例如检查数据库连接、第三方服务等

 // 返回一个简单的健康状态
 return "OK";
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

5097字

2）每个服务提供者都需要找到自己注册的节点、续期自己的节点，但问题是，怎么找到当前服务

提供者项目自己的节点呢？

那就充分利用本地的特性，在服务提供者本地维护一个 已注册节点集合，注册时添加节点 key 到

集合中，只需要续期集合内的 key 即可。

1）给注册中心 ﻿Registry﻿ 接口补充心跳检测方法，代码如下：

2）维护续期节点集合。

定义一个本机注册的节点 key 集合，用于维护续期：

开发实现

package com.yupi.yurpc.registry;

import com.yupi.yurpc.config.RegistryConfig;
import com.yupi.yurpc.model.ServiceMetaInfo;

import java.util.List;

/**
 * 注册中心
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public interface Registry {

 ...

 /**
 * 心跳检测（服务端）
 */
 void heartBeat();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/**
 * 本机注册的节点 key 集合（用于维护续期）
 */
private final Set<String> localRegisterNodeKeySet = new HashSet<>();

1
2
3
4

5097字

在服务注册时，需要将节点添加到集合中，代码如下：

同理，在服务注销时，也要从集合中移除对应节点：

3）在 ﻿EtcdRegistry﻿ 中实现 heartBeat 方法。

可以使用 Hutool 工具类的 CronUtil 实现定时任务，对所有集合中的节点执行 重新注册 操作，这

是一个小 trick，就相当于续签了。

心跳检测方法的代码如下：

public void register(ServiceMetaInfo serviceMetaInfo) throws Exception {
 // 创建 Lease 和 KV 客户端
 Lease leaseClient = client.getLeaseClient();

 // 创建一个 30 秒的租约
 long leaseId = leaseClient.grant(30).get().getID();

 // 设置要存储的键值对
 String registerKey = ETCD_ROOT_PATH + serviceMetaInfo.getServiceNodeKey()
 ByteSequence key = ByteSequence.from(registerKey, StandardCharsets.UTF_8)
 ByteSequence value = ByteSequence.from(JSONUtil.toJsonStr(serviceMetaInfo

 // 将键值对与租约关联起来，并设置过期时间
 PutOption putOption = PutOption.builder().withLeaseId(leaseId).build();
 kvClient.put(key, value, putOption).get();

 // 添加节点信息到本地缓存
 localRegisterNodeKeySet.add(registerKey);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

public void unRegister(ServiceMetaInfo serviceMetaInfo) {
 String registerKey = ETCD_ROOT_PATH + serviceMetaInfo.getServiceNodeKey();
 kvClient.delete(ByteSequence.from(registerKey, StandardCharsets.UTF_8));
 // 也要从本地缓存移除
 localRegisterNodeKeySet.remove(registerKey);
}

1
2
3
4
5
6

5097字

采用这种实现方案的好处是，即时 Etcd 注册中心的数据出现了丢失，通过心跳检测机制也会重新

注册节点信息。

4）开启 heartBeat。

在注册中心初始化的 init 方法中，调用 heartBeat 方法即可。

代码如下：

@Override
public void heartBeat() {
 // 10 秒续签一次
 CronUtil.schedule("*/10 * * * * *", new Task() {
 @Override
 public void execute() {
 // 遍历本节点所有的 key
 for (String key : localRegisterNodeKeySet) {
 try {
 List<KeyValue> keyValues = kvClient.get(ByteSequence.from
 .get()
 .getKvs();
 // 该节点已过期（需要重启节点才能重新注册）
 if (CollUtil.isEmpty(keyValues)) {
 continue;
 }
 // 节点未过期，重新注册（相当于续签）
 KeyValue keyValue = keyValues.get(0);
 String value = keyValue.getValue().toString(StandardChars
 ServiceMetaInfo serviceMetaInfo = JSONUtil.toBean(value,
 register(serviceMetaInfo);
 } catch (Exception e) {
 throw new RuntimeException(key + "续签失败", e);
 }
 }
 }
 });

 // 支持秒级别定时任务
 CronUtil.setMatchSecond(true);
 CronUtil.start();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

5097字

完善之前的 ﻿RegistryTest﻿ 单元测试代码：

使用可视化工具观察节点底部的过期时间，当 TTL 到 20 左右的时候，又会重置为 30，说明心跳

检测和续期机制正常执行。

测试

@Override
public void init(RegistryConfig registryConfig) {
 client = Client.builder()
 .endpoints(registryConfig.getAddress())
 .connectTimeout(Duration.ofMillis(registryConfig.getTimeout()))
 .build();
 kvClient = client.getKVClient();
 heartBeat();
}

1
2
3
4
5
6
7
8
9

public class RegistryTest {

 final Registry registry = new EtcdRegistry();

 @Before
 public void init() {
 RegistryConfig registryConfig = new RegistryConfig();
 registryConfig.setAddress("http://localhost:2379");
 registry.init(registryConfig);
 }

 ...

 @Test
 public void heartBeat() throws Exception {
 // init 方法中已经执行心跳检测了
 register();
 // 阻塞 1 分钟
 Thread.sleep(60 * 1000L);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

5097字

当服务提供者节点宕机时，应该从注册中心移除掉已注册的节点，否则会影响消费端调用。所以我

们需要设计一套服务节点下线机制。

服务节点下线又分为：

主动下线：服务提供者项目正常退出时，主动从注册中心移除注册信息。

被动下线：服务提供者项目异常推出时，利用 Etcd 的 key 过期机制自动移除。

被动下线已经可以利用 Etcd 的机制实现了，我们主要开发主动下线。

问题是，怎么在 Java 项目正常退出时，执行某个操作呢？

其实，非常简单，利用 JVM 的 ShutdownHook 就能实现。

JVM 的 ShutdownHook 是 Java 虚拟机提供的一种机制，允许开发者在 JVM 即将关闭之前执行

一些清理工作或其他必要的操作，例如关闭数据库连接、释放资源、保存临时数据等。

Spring Boot 也提供了类似的优雅停机能力。

1）完善 Etcd 注册中心的 ﻿destroy﻿ 方法，补充下线节点的逻辑。

服务节点下线机制

方案设计

●

●

开发实现

5097字

代码如下：

2）在 ﻿RpcApplication﻿ 的 init 方法中，注册 Shutdown Hook，当程序正常退出时会执行注册

中心的 destroy 方法。

代码如下：

测试方法很简单：

1. 启动服务提供者，然后观察服务是否成功被注册

测试

public void destroy() {
 System.out.println("当前节点下线");
 // 下线节点
 // 遍历本节点所有的 key
 for (String key : localRegisterNodeKeySet) {
 try {
 kvClient.delete(ByteSequence.from(key, StandardCharsets.UTF_8)).g
 } catch (Exception e) {
 throw new RuntimeException(key + "节点下线失败");
 }
 }

 // 释放资源
 if (kvClient != null) {
 kvClient.close();
 }
 if (client != null) {
 client.close();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

public static void init(RpcConfig newRpcConfig) {
 rpcConfig = newRpcConfig;
 log.info("rpc init, config = {}", newRpcConfig.toString());
 // 注册中心初始化
 RegistryConfig registryConfig = rpcConfig.getRegistryConfig();
 Registry registry = RegistryFactory.getInstance(registryConfig.getRegistr
 registry.init(registryConfig);
 log.info("registry init, config = {}", registryConfig);

 // 创建并注册 Shutdown Hook，JVM 退出时执行操作
 Runtime.getRuntime().addShutdownHook(new Thread(registry::destroy));
}

1
2
3
4
5
6
7
8
9

10
11
12

5097字

2. 正常停止服务提供者，然后观察服务信息是否被删除

正常情况下，服务节点信息列表的更新频率是不高的，所以在服务消费者从注册中心获取到服务节

点信息列表后，完全可以 缓存在本地，下次就不用再请求注册中心获取了，能够提高性能。

本地缓存的实现很简单，用一个列表来存储服务信息即可，提供操作列表的基本方法，包括：写缓

存、读缓存、清空缓存。

⭐ ️注意，本教程为了大家循序渐进的学习，暂时先只考虑单服务（相同 serviceKey）的缓存。如

果要实现多服务缓存，可以改为使用 Map 接口。参考本次提交的代码：

https://github.com/liyupi/yu-rpc/commit/c420222f4673114ee760b7875d68635902625ce9

<https://github.com/liyupi/yu-

rpc/commit/c420222f4673114ee760b7875d68635902625ce9>

在 ﻿registry﻿ 包下新增缓存类 ﻿RegistryServiceCache﻿，代码如下：

消费端服务缓存

1、增加本地缓存

https://github.com/liyupi/yu-rpc/commit/c420222f4673114ee760b7875d68635902625ce9
https://github.com/liyupi/yu-rpc/commit/c420222f4673114ee760b7875d68635902625ce9
https://github.com/liyupi/yu-rpc/commit/c420222f4673114ee760b7875d68635902625ce9
https://github.com/liyupi/yu-rpc/commit/c420222f4673114ee760b7875d68635902625ce9

5097字

1）修改 ﻿EtcdRegisty﻿ 的代码，使用本地缓存对象：

2、使用本地缓存

package com.yupi.yurpc.registry;

import com.yupi.yurpc.model.ServiceMetaInfo;

import java.util.List;

/**
 * 注册中心服务本地缓存
 */
public class RegistryServiceCache {

 /**
 * 服务缓存
 */
 List<ServiceMetaInfo> serviceCache;

 /**
 * 写缓存
 *
 * @param newServiceCache
 * @return
 */
 void writeCache(List<ServiceMetaInfo> newServiceCache) {
 this.serviceCache = newServiceCache;
 }

 /**
 * 读缓存
 *
 * @return
 */
 List<ServiceMetaInfo> readCache() {
 return this.serviceCache;
 }

 /**
 * 清空缓存
 */
 void clearCache() {
 this.serviceCache = null;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

5097字

2）修改服务发现逻辑，优先从缓存获取服务；如果没有缓存，再从注册中心获取，并且设置到缓

存中。

代码如下：

/**
 * 注册中心服务缓存
 */
private final RegistryServiceCache registryServiceCache = new RegistryServiceC

1
2
3
4

@Override
public List<ServiceMetaInfo> serviceDiscovery(String serviceKey) {
 // 优先从缓存获取服务
 List<ServiceMetaInfo> cachedServiceMetaInfoList = registryServiceCache.re
 if (cachedServiceMetaInfoList != null) {
 return cachedServiceMetaInfoList;
 }

 // 前缀搜索，结尾一定要加 '/'
 String searchPrefix = ETCD_ROOT_PATH + serviceKey + "/";

 try {
 // 前缀查询
 GetOption getOption = GetOption.builder().isPrefix(true).build();
 List<KeyValue> keyValues = kvClient.get(
 ByteSequence.from(searchPrefix, StandardCharsets.UTF_
 getOption)
 .get()
 .getKvs();
 // 解析服务信息
 List<ServiceMetaInfo> serviceMetaInfoList = keyValues.stream()
 .map(keyValue -> {
 String key = keyValue.getKey().toString(StandardCharsets.
 // 监听 key 的变化
 watch(key);
 String value = keyValue.getValue().toString(StandardChars
 return JSONUtil.toBean(value, ServiceMetaInfo.class);
 })
 .collect(Collectors.toList());

 // 写入服务缓存
 registryServiceCache.writeCache(serviceMetaInfoList);
 return serviceMetaInfoList;
 } catch (Exception e) {
 throw new RuntimeException("获取服务列表失败", e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

5097字

当服务注册信息发生变更（比如节点下线）时，需要即时更新消费端缓存。

问题是，怎么知道服务注册信息什么时候发生变更呢？

这就需要我们使用 Etcd 的 watch 监听机制，当监听的某个 key 发生修改或删除时，就会触发事件

来通知监听者。

如图：

什么时候去创建 watch 监听器呢？

我们首先要明确 watch 监听是服务消费者还是服务提供者执行的。由于我们的目标是更新缓存，缓

存是在服务消费端维护和使用的，所以也应该是服务消费端去 watch。

也就是说，只有服务消费者执行的方法中，可以创建 watch 监听器，那么比较合适的位置就是服务

发现方法（serviceDiscovery）。可以对本次获取到的所有服务节点 key 进行监听。

还需要防止重复监听同一个 key，可以通过定义一个已监听 key 的集合来实现。

下面我们来开发编码。

1）Registry 注册中心接口补充监听 key 的方法，代码如下：

3、服务缓存更新 - 监听机制

5097字

2） ﻿EtcdRegistry﻿ 类中，新增监听 key 的集合。

可以使用 ﻿ConcurrentHashSet﻿ 防止并发冲突，代码如下：

3）在 ﻿EtcdRegistry﻿ 类中实现监听 key 的方法。

通过调用 Etcd 的 ﻿WatchClient﻿ 实现监听，如果出现了 ﻿DELETE﻿ key 删除事件，则清理服务注

册缓存。

注意，即使 key 在注册中心被删除后再重新设置，之前的监听依旧生效。所以我们只监听首次加入

到监听集合的 key，防止重复。

代码如下：

package com.yupi.yurpc.registry;

import com.yupi.yurpc.config.RegistryConfig;
import com.yupi.yurpc.model.ServiceMetaInfo;

import java.util.List;

/**
 * 注册中心
 *
 * @author 程序员鱼皮

 * @learn 编程宝典

 * @from 编程导航知识星球

 */
public interface Registry {

 /**
 * 监听（消费端）
 *
 * @param serviceNodeKey
 */
 void watch(String serviceNodeKey);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/**
 * 正在监听的 key 集合
 */
private final Set<String> watchingKeySet = new ConcurrentHashSet<>();

1
2
3
4

5097字

4）在消费端获取服务时调用 watch 方法，对获取到的服务节点 key 进行监听。

修改服务发现方法的代码如下：

/**
 * 监听（消费端）
 *
 * @param serviceNodeKey
 */
@Override
public void watch(String serviceNodeKey) {
 Watch watchClient = client.getWatchClient();
 // 之前未被监听，开启监听
 boolean newWatch = watchingKeySet.add(serviceNodeKey);
 if (newWatch) {
 watchClient.watch(ByteSequence.from(serviceNodeKey, StandardCharsets.
 for (WatchEvent event : response.getEvents()) {
 switch (event.getEventType()) {
 // key 删除时触发
 case DELETE:
 // 清理注册服务缓存
 registryServiceCache.clearCache();
 break;
 case PUT:
 default:
 break;
 }
 }
 });
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

5097字

5）测试。

可以使用如下步骤，通过 debug 进行测试：

1. 先启动服务提供者

2. 修改服务消费者项目，连续调用服务 3 次，通过 debug 可以发现，第一次查注册中心、第二

次查询缓存。

3. 在第三次要调用服务时，下线服务提供者，可以在注册中心看到节点的注册 key 已被删除。

4. 继续向下执行，发现第三次调用服务时，又重新从注册中心查询，说明缓存已经被更新。

public List<ServiceMetaInfo> serviceDiscovery(String serviceKey) {
 // 优先从缓存获取服务
 List<ServiceMetaInfo> cachedServiceMetaInfoList = registryServiceCache.re
 if (cachedServiceMetaInfoList != null) {
 return cachedServiceMetaInfoList;
 }

 // 前缀搜索，结尾一定要加 '/'
 String searchPrefix = ETCD_ROOT_PATH + serviceKey + "/";

 try {
 // 前缀查询
 GetOption getOption = GetOption.builder().isPrefix(true).build();
 List<KeyValue> keyValues = kvClient.get(
 ByteSequence.from(searchPrefix, StandardCharsets.UTF_
 getOption)
 .get()
 .getKvs();
 // 解析服务信息
 List<ServiceMetaInfo> serviceMetaInfoList = keyValues.stream()
 .map(keyValue -> {
 String key = keyValue.getKey().toString(StandardCharsets.
 // 监听 key 的变化
 watch(key);
 String value = keyValue.getValue().toString(StandardChars
 return JSONUtil.toBean(value, ServiceMetaInfo.class);
 })
 .collect(Collectors.toList());
 // 写入服务缓存
 registryServiceCache.writeCache(serviceMetaInfoList);
 return serviceMetaInfoList;
 } catch (Exception e) {
 throw new RuntimeException("获取服务列表失败", e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

5097字

至此，消费端服务缓存功能已经完成。

其实和 Etcd 注册中心的实现方式极其相似，步骤如下：

1. 安装 ZooKeeper

2. 引入客户端依赖

3. 实现接口

4. SPI 补充 ZooKeeper 注册中心

1）本地下载并启动 ZooKeeper，教程使用的版本是 ﻿3.8.4﻿，大家最好跟教程保持一致。

下载链接：https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-

bin.tar.gz <https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-

bin.tar.gz>

如果发现该版本不存在，换一个最接近的版本即可。

正常启动 ZooKeeper 后，默认会占用几个端口号，比如 2181（客户端）、8080（管理端）等。

2）引入客户端依赖。

一般我们会使用 Apache Curator 来操作 ZooKeeper，可以参考官方文档：

https://curator.apache.org/docs/getting-started <https://curator.apache.org/docs/getting-

started> 。

引入的依赖代码如下：

ZooKeeper 注册中心实现

这部分不作为学习重点，理解了一种注册中心的实现方式，再用其他技术实现注册中心就很简单

了。

<!-- zookeeper -->
<dependency>
 <groupId>org.apache.curator</groupId>

 <artifactId>curator-x-discovery</artifactId>

 <version>5.6.0</version>

</dependency>

1
2
3
4
5
6
7
8
9

10

https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz
https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz
https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz
https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz
https://curator.apache.org/docs/getting-started
https://curator.apache.org/docs/getting-started
https://curator.apache.org/docs/getting-started

5097字

3）ZooKeeper 注册中心实现，这里不再赘述：

5097字

package com.yupi.yurpc.registry;

import cn.hutool.core.collection.ConcurrentHashSet;
import com.yupi.yurpc.config.RegistryConfig;
import com.yupi.yurpc.model.ServiceMetaInfo;
import lombok.extern.slf4j.Slf4j;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.cache.CuratorCache;
import org.apache.curator.framework.recipes.cache.CuratorCacheListener;
import org.apache.curator.retry.ExponentialBackoffRetry;
import org.apache.curator.x.discovery.ServiceDiscovery;
import org.apache.curator.x.discovery.ServiceDiscoveryBuilder;
import org.apache.curator.x.discovery.ServiceInstance;
import org.apache.curator.x.discovery.details.JsonInstanceSerializer;

import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.stream.Collectors;

/**
 * zookeeper 注册中心
 * 操作文档：Apache

 * 代码示例：<a href="https://github.com/apache/curator/blob/master/curator-e

 * 监听 key 示例：<a href="https://github.com/apache/curator/blob/master/cura

 *
 * @author coder_yupi

 * @from 编程导航学习圈

 * @learn yupi 的编程宝典

 */
@Slf4j
public class ZooKeeperRegistry implements Registry {

 private CuratorFramework client;

 private ServiceDiscovery<ServiceMetaInfo> serviceDiscovery;

 /**
 * 本机注册的节点 key 集合（用于维护续期）
 */
 private final Set<String> localRegisterNodeKeySet = new HashSet<>();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

5097字

 /**
 * 注册中心服务缓存
 */
 private final RegistryServiceCache registryServiceCache = new RegistrySe

 /**
 * 正在监听的 key 集合
 */
 private final Set<String> watchingKeySet = new ConcurrentHashSet<>();

 /**
 * 根节点
 */
 private static final String ZK_ROOT_PATH = "/rpc/zk";

 @Override
 public void init(RegistryConfig registryConfig) {
 // 构建 client 实例
 client = CuratorFrameworkFactory
 .builder()
 .connectString(registryConfig.getAddress())
 .retryPolicy(new ExponentialBackoffRetry(Math.toIntExact(reg
 .build();

 // 构建 serviceDiscovery 实例
 serviceDiscovery = ServiceDiscoveryBuilder.builder(ServiceMetaInfo.c
 .client(client)
 .basePath(ZK_ROOT_PATH)
 .serializer(new JsonInstanceSerializer<>(ServiceMetaInfo.cla
 .build();

 try {
 // 启动 client 和 serviceDiscovery
 client.start();
 serviceDiscovery.start();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void register(ServiceMetaInfo serviceMetaInfo) throws Exception {
 // 注册到 zk 里
 serviceDiscovery.registerService(buildServiceInstance(serviceMetaInf

 // 添加节点信息到本地缓存
 String registerKey = ZK_ROOT_PATH + "/" + serviceMetaInfo.getService
 localRegisterNodeKeySet.add(registerKey);
 }

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

5097字

 @Override
 public void unRegister(ServiceMetaInfo serviceMetaInfo) {
 try {
 serviceDiscovery.unregisterService(buildServiceInstance(serviceM
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 // 从本地缓存移除
 String registerKey = ZK_ROOT_PATH + "/" + serviceMetaInfo.getService
 localRegisterNodeKeySet.remove(registerKey);
 }

 @Override
 public List<ServiceMetaInfo> serviceDiscovery(String serviceKey) {
 // 优先从缓存获取服务
 List<ServiceMetaInfo> cachedServiceMetaInfoList = registryServiceCac
 if (cachedServiceMetaInfoList != null) {
 return cachedServiceMetaInfoList;
 }

 try {
 // 查询服务信息
 Collection<ServiceInstance<ServiceMetaInfo>> serviceInstanceList

 // 解析服务信息
 List<ServiceMetaInfo> serviceMetaInfoList = serviceInstanceList.
 .map(ServiceInstance::getPayload)
 .collect(Collectors.toList());

 // 写入服务缓存
 registryServiceCache.writeCache(serviceMetaInfoList);
 return serviceMetaInfoList;
 } catch (Exception e) {
 throw new RuntimeException("获取服务列表失败", e);
 }
 }

 @Override
 public void heartBeat() {
 // 不需要心跳机制，建立了临时节点，如果服务器故障，则临时节点直接丢失
 }

 /**
 * 监听（消费端）
 *
 * @param serviceNodeKey 服务节点 key
 */
 @Override
 public void watch(String serviceNodeKey) {
 String watchKey = ZK_ROOT_PATH + "/" + serviceNodeKey;
 boolean newWatch = watchingKeySet.add(watchKey);

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

5097字

4）SPI 增加对 ZooKeeper 的支持：

如图：

 if (newWatch) {
 CuratorCache curatorCache = CuratorCache.build(client, watchKey)
 curatorCache.start();
 curatorCache.listenable().addListener(
 CuratorCacheListener
 .builder()
 .forDeletes(childData -> registryServiceCache.cl
 .forChanges(((oldNode, node) -> registryServiceC
 .build()
);
 }
 }

 @Override
 public void destroy() {
 log.info("当前节点下线");
 // 下线节点（这一步可以不做，因为都是临时节点，服务下线，自然就被删掉了）
 for (String key : localRegisterNodeKeySet) {
 try {
 client.delete().guaranteed().forPath(key);
 } catch (Exception e) {
 throw new RuntimeException(key + "节点下线失败");
 }
 }

 // 释放资源
 if (client != null) {
 client.close();
 }
 }

 private ServiceInstance<ServiceMetaInfo> buildServiceInstance(ServiceMet
 String serviceAddress = serviceMetaInfo.getServiceHost() + ":" + ser
 try {
 return ServiceInstance
 .<ServiceMetaInfo>builder()
 .id(serviceAddress)
 .name(serviceMetaInfo.getServiceKey())
 .address(serviceAddress)

payload(serviceMetaInfo)

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

etcd=com.yupi.yurpc.registry.EtcdRegistry
zookeeper=com.yupi.yurpc.registry.ZooKeeperRegistry

1
2

url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2Fbc715f3b67cad0c9efef7183af

5097字

5）最后，可以更改服务提供者和消费者的注册中心配置来测试。

更改的配置如下：

1）完善服务注册信息。

参考思路：比如增加节点注册时间。

2）实现更多注册中心。（较难）

参考思路：使用 Redis 实现注册中心。

3）保证注册中心的高可用。

参考思路：了解 Etcd 的集群机制。

4）服务注册信息失效的兜底策略。（较难）

参考思路：如果消费端调用节点时发现节点失效，也可以考虑是否需要从注册中心更新服务注册信

息、或者强制更新本地缓存。

5）注册中心 key 监听时，采用观察者模式实现处理。

参考思路：可以定义一个 Listener 接口，根据 watch key 的变更类型去调用 Listener 的不同方

法。

三、扩展

rpc.registryConfig.registry=zookeeper
rpc.registryConfig.address=localhost:2181

1
2

https://service.weibo.com/share/share.php?url=https%3A%2F%2Fwww.yuque.com%2Fu37765561%2Fak85bt%2Fbc715f3b67cad0c9efef7183aff25a8f&pic=null&title=6_%E6%B3%A8%E5%86%8C%E4%B8%AD%E5%BF%83%E4%BC%98%E5%8C%96

