
11 - 团队空间 - 智能协同云图库项
目教程 - 编程导航教程

本节重点从本节开始我们将进行项目第三阶段

—— 团队空间的开发，让项目能够面向 B 端

（企业）提供服务，比如作为团队共享素材、团

队活动相册等，增强项目的商业价值。

本节重点
从本节开始我们将进行项目第三阶段 —— 团队空间的开发，

让项目能够面向 B 端（企业）提供服务，比如作为团队共享

素材、团队活动相册等，增强项目的商业价值。

本节先给项目增加团队共享空间的能力，大纲：

团队空间需求分析

团队空间方案设计

团队空间后端开发

团队空间前端开发

本节学完后，你应该能够掌握一个团队协作系统的方案设计

和开发。

⭐️ 友情提示，本节涉及的后端新技术较多，学习难度略大，

而且细节很多，请勿必仔细学习！

一、需求分析
之前我们已经完成了私有空间模块，团队空间和它类似，我

们可以拆分为 4 个需求：

 

1）创建团队共享空间

用户可以创建 最多一个 团队共享空间，用于团队协作和资源

共享，空间管理员拥有私有空间的所有能力，包括自由上传

图片、检索图片、管理图片、分析空间等。

2）空间成员管理

成员邀请：空间管理员可以邀请新成员加入团队，共享空

间内的图片。

设置权限：空间管理员可以为成员设置不同的角色（如查

看者、编辑者、管理员），控制成员的权限范围。

3）空间成员权限控制：仅特定角色的成员可访问或操作团队

空间内的图片。

4）空间数据管理：考虑到团队空间的图片数量可能比较多，

可以对特定空间的数据进行单独的管理，而不是和公共图

库、私有空间的图片混在一起。

二、方案设计
让我们先依次分析上述需求，并思考对应的解决方案。

创建团队共享空间

之前已经开发了空间模块，团队空间可以直接复用私有空间

的大多数能力。因此可以给空间表新增一个 spaceType 字

段，用于区分私有和团队空间。

ALTER TABLE space
 ADD COLUMN spaceType int default 0 not null comment '空间类型：0-私

CREATE INDEX idx_spaceType ON space (spaceType);

空间成员管理

1、业务流程

 

为了让项目更容易扩展，减少原有代码的修改，我们约定 只

有团队空间才有成员的概念。

1）成员邀请：空间管理员可以直接输入成员 id 来添加新成

员，无需该用户确认，这样可以提高开发效率。

2）设置权限：空间管理员可以为已加入成员设置不同的角

色，控制成员的权限范围，类似于编辑成员信息。

2、库表设计

由于空间和用户是多对多的关系，还要同时记录用户在某空

间的角色，所以需要新建关联表：

create table if not exists space_user
(
 id bigint auto_increment comment 'id' primary key,
 spaceId bigint not null commen
 userId bigint not null commen
 spaceRole varchar(128) default 'viewer' null comment '空
 createTime datetime default CURRENT_TIMESTAMP not null commen
 updateTime datetime default CURRENT_TIMESTAMP not null on upd

 UNIQUE KEY uk_spaceId_userId (spaceId, userId),
 INDEX idx_spaceId (spaceId),
 INDEX idx_userId (userId)
) comment '空间用户关联' collate = utf8mb4_unicode_ci;

注意几个细节：

1. 给 spaceId 和 userId 添加唯一索引，确保同一用户在同一

空间中只能有一个角色（不能重复加入）。由于有唯一

键，不需要使用逻辑删除字段，否则无法退出后再重新加

入。

2. 给关联字段添加索引，提高查询效率

3. 为了跟用户自身在项目中的角色 userRole 区分开，空间角

色的名称使用 spaceRole

为保证逻辑的统一，创建团队空间时要自动将创建人作为空

间管理员，保存到空间成员表中。

空间成员权限控制

仅特定角色的成员可访问或操作团队空间内的图片。

团队空间的权限管理可比私有空间的权限复杂多了，除了创

建人外还有其他成员，涉及到查看图片、上传图片、管理空

间图片、管理空间等多种不同的权限。

1、RBAC 权限控制

对于复杂的权限控制场景，我们可以采用经典的 RBAC 权限

控制模型（基于角色的访问控制，Role-Based Access

Control），核心概念包括 用户、角色、权限。

一个用户可以有多个角色

一个角色可以有多个权限

这样一来，就可以灵活地配置用户具有的权限了。

一般来说，标准的 RBAC 实现需要 5 张表：用户表、角色

表、权限表、用户角色关联表、角色权限关联表，还是有一

定开发成本的。由于我们的项目中，团队空间不需要那么多

角色，可以简化 RBAC 的实现方式，比如将角色和权限直接

定义到配置文件中。

2、角色和权限定义

本项目的角色：

角色 描述

浏览者 仅可查看空间中的图片内容

编辑者 可查看、上传和编辑图片内容

管理员 拥有管理空间和成员的所有权限

本项目的权限：

权限键

功能

名称 描述

spaceUser:manage
成员

管理

管理空间成员，添加

或移除成员

picture:view
查看

图片

查看空间中的图片内

容

picture:upload
上传

图片
上传图片到空间中

picture:edit
修改

图片

编辑已上传的图片信

息

picture:delete
删除

图片
删除空间中的图片

角色与权限映射：

角

色 对应权限键 可执行功能

浏

览

picture:view 查看图片

角

色 对应权限键 可执行功能

者

编

辑

者

picture:view, picture:upload,

picture:edit, picture:delete

查看图片、上

传图片、修改

图片、删除图

片

管

理

员

spaceUser:manage,

picture:view, picture:upload,

picture:edit, picture:delete

成员管理、查

看图片、上传

图片、修改图

片、删除图片

3、权限校验实现方案

RBAC 只是一种权限设计模型，我们在 Java 代码中如何实现

权限校验呢？

1）最直接的方案是像之前校验私有空间权限一样，封装个团

队空间的权限校验方法；或者类似用户权限校验一样，写个

注解 + AOP 切面。

2）对于复杂的角色和权限管理，可以选用现成的第三方权限

校验框架来实现，编写一套权限校验规则代码后，就能整体

管理系统的权限校验逻辑了。

其实在本项目中，由于角色和权限不多，采用方案 1 实现会

更方便一些，我也建议大家优先选择这种方案。方案 2 的代

码量虽然未必比方案 1 少，但是会让整个系统的权限校验逻

辑更加清晰，为了让大家后续能够应对更复杂的权限管理需

求，此处鱼皮给大家讲解方案 2，并选用国内主流的 权限校

验框架 Sa-Token 实现。

空间数据管理

考虑到团队空间的图片数量可能比较多，可以对特定空间的

数据进行单独的管理。

如何对数据进行单独的管理呢？

https://sa-token.cc/doc.html#/start/example
https://sa-token.cc/doc.html#/start/example

1、图片信息数据

可以给每个团队空间单独创建一张图片表 picture_{spaceId} ，

也就是分库分表中的 分表 ，而不是和公共图库、私有空间的

图片混在一起。这样不仅查询空间内的图片效率更高，还便

于整体管理和清理空间。但是要注意，仅对旗舰版空间生

效，否则分表的数量会特别多，反而可能影响性能。

注意，我们要实现的，还不是普通的静态分表，而是会随着

新增空间不断增加分表数量的动态分表，会使用分库分表框

架 Apache ShardingSphere 带大家实现。

2、图片文件数据

已经将每个空间的图片存到不同的路径中了，实现了隔离，

无需额外开发。

💡 你会发现，我们在设计上就将团队空间和私有空间隔离，

仅对团队空间应用成员管理、权限控制、动态分表。这样可

以尽量减少对原有代码的改动，避免出现问题。

三、后端开发

创建团队共享空间

1、数据模型

Space、SpaceVO、SpaceAddRequest、

SpaceQueryRequest 补充 spaceType 字段：

private Integer spaceType;

定义空间类型枚举：

@Getter
public enum SpaceTypeEnum {

 PRIVATE("私有空间", 0),
 TEAM("团队空间", 1);

 private final String text;

 private final int value;

 SpaceTypeEnum(String text, int value) {

https://shardingsphere.apache.org/

 

 

 this.text = text;
 this.value = value;
 }

 public static SpaceTypeEnum getEnumByValue(Integer value) {
 if (ObjUtil.isEmpty(value)) {
 return null;
 }
 for (SpaceTypeEnum spaceTypeEnum : SpaceTypeEnum.values()) {
 if (spaceTypeEnum.value == value) {
 return spaceTypeEnum;
 }
 }
 return null;
 }
}

2、新建团队空间

可以直接复用创建空间的方法，只需要做一些改动即可。

1）创建空间时为空间类型指定默认值：

if (StrUtil.isBlank(spaceAddRequest.getSpaceName())) {
 spaceAddRequest.setSpaceName("默认空间");
}
if (spaceAddRequest.getSpaceLevel() == null) {
 spaceAddRequest.setSpaceLevel(SpaceLevelEnum.COMMON.getValue());
}
if (spaceAddRequest.getSpaceType() == null) {
 spaceAddRequest.setSpaceType(SpaceTypeEnum.PRIVATE.getValue());
}

Space space = new Space();
BeanUtils.copyProperties(spaceAddRequest, space);

this.fillSpaceBySpaceLevel(space);

2）validSpace 方法补充对空间类型的校验：

public void validSpace(Space space, boolean add) {
 Integer spaceType = space.getSpaceType();
 SpaceTypeEnum spaceTypeEnum = SpaceTypeEnum.getEnumByValue(spaceT

 if (add) {
 if (spaceType == null) {
 throw new BusinessException(ErrorCode.PARAMS_ERROR, "空间类
 }
 }

 if (spaceType != null && spaceTypeEnum == null) {

 

 

 

 throw new BusinessException(ErrorCode.PARAMS_ERROR, "空间类型不
 }
}

3）限制每个普通用户仅能创建一个团队空间（管理员可以创

建多个），由于普通用户也仅能创建一个私有空间，相当于

** 普通用户每类空间只能创建 1 个。** 因此，只要在判断是

否已创建空间时，补充 spaceType 作为查询条件即可：

Long newSpaceId = transactionTemplate.execute(status -> {
 if (!userService.isAdmin(loginUser)) {
 boolean exists = this.lambdaQuery()
 .eq(Space::getUserId, userId)
 .eq(Space::getSpaceType, spaceAddRequest.getSpaceType
 .exists();
 ThrowUtils.throwIf(exists, ErrorCode.OPERATION_ERROR, "每个用户
 }

 boolean result = this.save(space);
 ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR);

 return space.getId();
});

当然，这里的逻辑你可以自由调整，比如不允许用户创建团

队空间，需要联系管理员或付费开通。

3、查询团队空间

给 SpaceService 的 getQueryWrapper 方法补充 spaceType

的查询条件：

Integer spaceType = spaceQueryRequest.getSpaceType();
queryWrapper.eq(ObjUtil.isNotEmpty(spaceType), "spaceType", spaceType

之后前端就能够按照空间类别获取空间列表了。

空间成员管理

空间成员管理的开发比较简单，其实就是 “增删改查”。

1、数据模型

1）首先利用 MyBatisX 插件生成空间成员表相关的基础代

码，包括实体类、Mapper、Service。

用户模块中有讲解详细流程，此处不再赘述。

2）每个操作都需要提供一个请求类，都放在

model.dto.spaceuser 包下。

添加空间成员请求，给空间管理员使用：

@Data
public class SpaceUserAddRequest implements Serializable {

 private Long spaceId;

 private Long userId;

 private String spaceRole;

 private static final long serialVersionUID = 1L;
}

编辑空间成员请求，给空间管理员使用，可以设置空间成员

的角色：

@Data
public class SpaceUserEditRequest implements Serializable {

 private Long id;

 private String spaceRole;

 private static final long serialVersionUID = 1L;
}

查询空间成员请求，可以不用分页：

@Data
public class SpaceUserQueryRequest implements Serializable {

 private Long id;

 private Long spaceId;

 private Long userId;

 private String spaceRole;

 private static final long serialVersionUID = 1L;
}

3）在 model.dto.vo 下新建空间成员的视图包装类，可以额外

关联空间信息和创建空间的用户信息。还可以编写

SpaceUser 实体类和该 VO 类的转换方法，便于后续快速传

值。

@Data
public class SpaceUserVO implements Serializable {

 private Long id;

 private Long spaceId;

 private Long userId;

 private String spaceRole;

 private Date createTime;

 private Date updateTime;

 private UserVO user;

 private SpaceVO space;

 private static final long serialVersionUID = 1L;

 public static SpaceUser voToObj(SpaceUserVO spaceUserVO) {
 if (spaceUserVO == null) {
 return null;
 }
 SpaceUser spaceUser = new SpaceUser();
 BeanUtils.copyProperties(spaceUserVO, spaceUser);
 return spaceUser;
 }

 public static SpaceUserVO objToVo(SpaceUser spaceUser) {
 if (spaceUser == null) {
 return null;
 }
 SpaceUserVO spaceUserVO = new SpaceUserVO();
 BeanUtils.copyProperties(spaceUser, spaceUserVO);
 return spaceUserVO;
 }
}

4）在 model.enums 包下新建空间角色枚举：

@Getter
public enum SpaceRoleEnum {

 VIEWER("浏览者", "viewer"),
 EDITOR("编辑者", "editor"),
 ADMIN("管理员", "admin");

 private final String text;

 private final String value;

 SpaceRoleEnum(String text, String value) {
 this.text = text;
 this.value = value;
 }

 public static SpaceRoleEnum getEnumByValue(String value) {
 if (ObjUtil.isEmpty(value)) {
 return null;
 }
 for (SpaceRoleEnum anEnum : SpaceRoleEnum.values()) {
 if (anEnum.value.equals(value)) {
 return anEnum;
 }
 }
 return null;
 }

 

 public static List<String> getAllTexts() {
 return Arrays.stream(SpaceRoleEnum.values())
 .map(SpaceRoleEnum::getText)
 .collect(Collectors.toList());
 }

 public static List<String> getAllValues() {
 return Arrays.stream(SpaceRoleEnum.values())
 .map(SpaceRoleEnum::getValue)
 .collect(Collectors.toList());
 }
}

2、基础服务开发

可以参考图片服务的开发方法，完成 SpaceUserService 和实

现类，大多数代码可以直接复用。

我们主要开发下列方法：

1）添加空间成员：

@Override
public long addSpaceUser(SpaceUserAddRequest spaceUserAddRequest) {

 ThrowUtils.throwIf(spaceUserAddRequest == null, ErrorCode.PARAMS_
 SpaceUser spaceUser = new SpaceUser();
 BeanUtils.copyProperties(spaceUserAddRequest, spaceUser);
 validSpaceUser(spaceUser, true);

 boolean result = this.save(spaceUser);
 ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR);
 return spaceUser.getId();
}

2）校验空间成员对象，增加 add 参数用来区分是创建数据时

校验还是编辑时校验，判断条件是不一样的。比如创建成员

时要检查用户是否存在。

@Override
public void validSpaceUser(SpaceUser spaceUser, boolean add) {
 ThrowUtils.throwIf(spaceUser == null, ErrorCode.PARAMS_ERROR);

 Long spaceId = spaceUser.getSpaceId();
 Long userId = spaceUser.getUserId();
 if (add) {
 ThrowUtils.throwIf(ObjectUtil.hasEmpty(spaceId, userId), Erro
 User user = userService.getById(userId);
 ThrowUtils.throwIf(user == null, ErrorCode.NOT_FOUND_ERROR, "
 Space space = spaceService.getById(spaceId);

 

 

 ThrowUtils.throwIf(space == null, ErrorCode.NOT_FOUND_ERROR,
 }

 String spaceRole = spaceUser.getSpaceRole();
 SpaceRoleEnum spaceRoleEnum = SpaceRoleEnum.getEnumByValue(spaceR
 if (spaceRole != null && spaceRoleEnum == null) {
 throw new BusinessException(ErrorCode.PARAMS_ERROR, "空间角色不
 }
}

还可以校验是否已添加该成员，可自行实现。

3）将查询请求对象转换为 MyBatis-Plus 的查询封装对象：

@Override
public QueryWrapper<SpaceUser> getQueryWrapper(SpaceUserQueryRequest
 QueryWrapper<SpaceUser> queryWrapper = new QueryWrapper<>();
 if (spaceUserQueryRequest == null) {
 return queryWrapper;
 }

 Long id = spaceUserQueryRequest.getId();
 Long spaceId = spaceUserQueryRequest.getSpaceId();
 Long userId = spaceUserQueryRequest.getUserId();
 String spaceRole = spaceUserQueryRequest.getSpaceRole();
 queryWrapper.eq(ObjUtil.isNotEmpty(id), "id", id);
 queryWrapper.eq(ObjUtil.isNotEmpty(spaceId), "spaceId", spaceId);
 queryWrapper.eq(ObjUtil.isNotEmpty(userId), "userId", userId);
 queryWrapper.eq(ObjUtil.isNotEmpty(spaceRole), "spaceRole", space
 return queryWrapper;
}

4）获取空间成员封装类，需要关联查询用户和空间的信息。

查询单个封装类：

@Override
public SpaceUserVO getSpaceUserVO(SpaceUser spaceUser, HttpServletReq

 SpaceUserVO spaceUserVO = SpaceUserVO.objToVo(spaceUser);

 Long userId = spaceUser.getUserId();
 if (userId != null && userId > 0) {
 User user = userService.getById(userId);
 UserVO userVO = userService.getUserVO(user);
 spaceUserVO.setUser(userVO);
 }

 Long spaceId = spaceUser.getSpaceId();
 if (spaceId != null && spaceId > 0) {
 Space space = spaceService.getById(spaceId);
 SpaceVO spaceVO = spaceService.getSpaceVO(space, request);

 

 

 spaceUserVO.setSpace(spaceVO);
 }
 return spaceUserVO;
}

查询封装类列表：

@Override
public List<SpaceUserVO> getSpaceUserVOList(List<SpaceUser> spaceUser

 if (CollUtil.isEmpty(spaceUserList)) {
 return Collections.emptyList();
 }

 List<SpaceUserVO> spaceUserVOList = spaceUserList.stream().map(Sp

 Set<Long> userIdSet = spaceUserList.stream().map(SpaceUser::getUs
 Set<Long> spaceIdSet = spaceUserList.stream().map(SpaceUser::getS

 Map<Long, List<User>> userIdUserListMap = userService.listByIds(u
 .collect(Collectors.groupingBy(User::getId));
 Map<Long, List<Space>> spaceIdSpaceListMap = spaceService.listByI
 .collect(Collectors.groupingBy(Space::getId));

 spaceUserVOList.forEach(spaceUserVO -> {
 Long userId = spaceUserVO.getUserId();
 Long spaceId = spaceUserVO.getSpaceId();

 User user = null;
 if (userIdUserListMap.containsKey(userId)) {
 user = userIdUserListMap.get(userId).get(0);
 }
 spaceUserVO.setUser(userService.getUserVO(user));

 Space space = null;
 if (spaceIdSpaceListMap.containsKey(spaceId)) {
 space = spaceIdSpaceListMap.get(spaceId).get(0);
 }
 spaceUserVO.setSpace(SpaceVO.objToVo(space));
 });
 return spaceUserVOList;
}

3、接口开发

参考图片接口的开发方法，完成 SpaceUserController 类，大

多数代码可以直接复用。

需要开发的接口包括：

添加成员到空间：仅拥有成员管理权限的用户可使用。

从空间移除成员：仅拥有成员管理权限的用户可使用。

查询某个成员在空间的信息：仅拥有成员管理权限的用户

可使用。

查询空间成员列表：仅拥有成员管理权限的用户可使用。

编辑成员信息：仅拥有成员管理权限的用户可使用。

查询我加入的团队空间列表：所有已登录用户可使用。

由于我们后续会使用统一的权限管理框架，这个阶段可以先

只实现功能，不进行权限校验。

代码如下：

@RestController
@RequestMapping("/spaceUser")
@Slf4j
public class SpaceUserController {

 @Resource
 private SpaceUserService spaceUserService;

 @Resource
 private UserService userService;

 @PostMapping("/add")
 public BaseResponse<Long> addSpaceUser(@RequestBody SpaceUserAddR
 ThrowUtils.throwIf(spaceUserAddRequest == null, ErrorCode.PAR
 long id = spaceUserService.addSpaceUser(spaceUserAddRequest);
 return ResultUtils.success(id);
 }

 @PostMapping("/delete")
 public BaseResponse<Boolean> deleteSpaceUser(@RequestBody DeleteR
 HttpServletRequest r
 if (deleteRequest == null || deleteRequest.getId() <= 0) {
 throw new BusinessException(ErrorCode.PARAMS_ERROR);
 }
 long id = deleteRequest.getId();

 SpaceUser oldSpaceUser = spaceUserService.getById(id);
 ThrowUtils.throwIf(oldSpaceUser == null, ErrorCode.NOT_FOUND_

 boolean result = spaceUserService.removeById(id);
 ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR);
 return ResultUtils.success(true);
 }

 @PostMapping("/get")
 public BaseResponse<SpaceUser> getSpaceUser(@RequestBody SpaceUse

 ThrowUtils.throwIf(spaceUserQueryRequest == null, ErrorCode.P
 Long spaceId = spaceUserQueryRequest.getSpaceId();
 Long userId = spaceUserQueryRequest.getUserId();
 ThrowUtils.throwIf(ObjectUtil.hasEmpty(spaceId, userId), Erro

 SpaceUser spaceUser = spaceUserService.getOne(spaceUserServic
 ThrowUtils.throwIf(spaceUser == null, ErrorCode.NOT_FOUND_ERR
 return ResultUtils.success(spaceUser);
 }

 @PostMapping("/list")
 public BaseResponse<List<SpaceUserVO>> listSpaceUser(@RequestBody
 HttpServletR
 ThrowUtils.throwIf(spaceUserQueryRequest == null, ErrorCode.P
 List<SpaceUser> spaceUserList = spaceUserService.list(
 spaceUserService.getQueryWrapper(spaceUserQueryReques
);
 return ResultUtils.success(spaceUserService.getSpaceUserVOLis
 }

 @PostMapping("/edit")
 public BaseResponse<Boolean> editSpaceUser(@RequestBody SpaceUser
 HttpServletRequest req
 if (spaceUserEditRequest == null || spaceUserEditRequest.getI
 throw new BusinessException(ErrorCode.PARAMS_ERROR);
 }

 SpaceUser spaceUser = new SpaceUser();
 BeanUtils.copyProperties(spaceUserEditRequest, spaceUser);

 spaceUserService.validSpaceUser(spaceUser, false);

 long id = spaceUserEditRequest.getId();
 SpaceUser oldSpaceUser = spaceUserService.getById(id);
 ThrowUtils.throwIf(oldSpaceUser == null, ErrorCode.NOT_FOUND_

 boolean result = spaceUserService.updateById(spaceUser);
 ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR);
 return ResultUtils.success(true);
 }

 @PostMapping("/list/my")
 public BaseResponse<List<SpaceUserVO>> listMyTeamSpace(HttpServle
 User loginUser = userService.getLoginUser(request);
 SpaceUserQueryRequest spaceUserQueryRequest = new SpaceUserQu
 spaceUserQueryRequest.setUserId(loginUser.getId());
 List<SpaceUser> spaceUserList = spaceUserService.list(
 spaceUserService.getQueryWrapper(spaceUserQueryReques
);
 return ResultUtils.success(spaceUserService.getSpaceUserVOLis
 }
}

4、创建团队空间时自动新增成员记录

 

根据需求，用户在创建团队空间时，会默认作为空间的管理

员，需要在空间成员表中新增一条记录。

修改 addSpace 方法，在事务中补充插入空间成员记录：

boolean result = this.save(space);
ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR);

if (SpaceTypeEnum.TEAM.getValue() == spaceAddRequest.getSpaceType())
 SpaceUser spaceUser = new SpaceUser();
 spaceUser.setSpaceId(space.getId());
 spaceUser.setUserId(userId);
 spaceUser.setSpaceRole(SpaceRoleEnum.ADMIN.getValue());
 result = spaceUserService.save(spaceUser);
 ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR, "创建团队成
}

return space.getId();

扩展

1）添加成员到空间时，可以支持发送邀请和审批。

实现思路：给空间成员表新增一个邀请确认状态的字段

2）由于空间管理员可能有多个，空间成员表可以补充添加成

员至空间的邀请人字段（createUserId）

3）空间成员操作执行前可以补充一些校验，比如：

只有已经是空间成员，才能被移除或编辑

如果编辑后的角色跟之前一致，就不用更新

空间成员权限控制

引入团队空间后，需要给空间操作、图片操作、空间成员操

作添加权限控制逻辑。为了简化开发，同时防止一些空间重

要信息的修改冲突，空间操作（空间信息的增删改查）仍然

复用之前私有空间的校验逻辑 —— 仅创建人可操作。

由于权限校验属于整个项目的公共服务，统一放在

manager.auth 包中。

1、权限定义

根据 RBAC 权限模型，需要定义角色和权限。

1）此处选用 JSON 配置文件来定义角色、权限、角色和权限

之间的关系，相比从数据库表中获取，实现更方便，查询也

更高效。

在 resources/biz 目录下新建 JSON 配置文件

spaceUserAuthConfig.json ：

{
 "permissions": [
 {
 "key": "spaceUser:manage",
 "name": "成员管理",
 "description": "管理空间成员，添加或移除成员"
 },
 {
 "key": "picture:view",
 "name": "查看图片",
 "description": "查看空间中的图片内容"
 },
 {
 "key": "picture:upload",
 "name": "上传图片",
 "description": "上传图片到空间中"
 },
 {
 "key": "picture:edit",
 "name": "修改图片",
 "description": "编辑已上传的图片信息"
 },
 {
 "key": "picture:delete",
 "name": "删除图片",
 "description": "删除空间中的图片"
 }
],
 "roles": [
 {
 "key": "viewer",
 "name": "浏览者",
 "permissions": [
 "picture:view"
],
 "description": "查看图片"
 },
 {
 "key": "editor",
 "name": "编辑者",
 "permissions": [
 "picture:view",
 "picture:upload",
 "picture:edit",
 "picture:delete"
],
 "description": "查看图片、上传图片、修改图片、删除图片"
 },
 {

 "key": "admin",
 "name": "管理员",
 "permissions": [
 "spaceUser:manage",
 "picture:view",
 "picture:upload",
 "picture:edit",
 "picture:delete"
],
 "description": "成员管理、查看图片、上传图片、修改图片、删除图片"
 }
]
}

2）在 auth.model 包下新建数据模型，用于接收配置文件的

值。

权限配置类：

@Data
public class SpaceUserAuthConfig implements Serializable {

 private List<SpaceUserPermission> permissions;

 private List<SpaceUserRole> roles;

 private static final long serialVersionUID = 1L;
}

空间成员权限：

@Data
public class SpaceUserPermission implements Serializable {

 private String key;

 private String name;

 private String description;

 private static final long serialVersionUID = 1L;

}

空间成员角色：

@Data
public class SpaceUserRole implements Serializable {

 private String key;

 private String name;

 private List<String> permissions;

 private String description;

 private static final long serialVersionUID = 1L;
}

3）定义空间成员权限常量类，便于后续校验权限时使用：

public interface SpaceUserPermissionConstant {

 String SPACE_USER_MANAGE = "spaceUser:manage";

 String PICTURE_VIEW = "picture:view";

 String PICTURE_UPLOAD = "picture:upload";

 String PICTURE_EDIT = "picture:edit";

 String PICTURE_DELETE = "picture:delete";
}

4）在 auth 包下新建 SpaceUserAuthManager，可加载配置

文件到对象，并提供根据角色获取权限列表的方法。

@Component
public class SpaceUserAuthManager {

 @Resource
 private SpaceUserService spaceUserService;

 @Resource
 private UserService userService;

 public static final SpaceUserAuthConfig SPACE_USER_AUTH_CONFIG;

 static {
 String json = ResourceUtil.readUtf8Str("biz/spaceUserAuthConf
 SPACE_USER_AUTH_CONFIG = JSONUtil.toBean(json, SpaceUserAuthC
 }

 

 public List<String> getPermissionsByRole(String spaceUserRole) {
 if (StrUtil.isBlank(spaceUserRole)) {
 return new ArrayList<>();
 }

 SpaceUserRole role = SPACE_USER_AUTH_CONFIG.getRoles().stream
 .filter(r -> spaceUserRole.equals(r.getKey()))
 .findFirst()
 .orElse(null);
 if (role == null) {
 return new ArrayList<>();
 }
 return role.getPermissions();
 }
}

2、Sa-Token 入门

Sa-Token 是一个轻量级 Java 权限认证框架，相比 Spring

Security 等更加简单易学，用作者的话说，使用该框架可以让

鉴权变得简单、优雅~

框架的学习并不难，参考 官方文档 就好，等下我们要学习

实战 Sa-Token 的主流特性和高级用法。

1）引入 Sa-Token：

<dependency>
 <groupId>cn.dev33</groupId>
 <artifactId>sa-token-spring-boot-starter</artifactId>
 <version>1.39.0</version>
</dependency>

Sa-Token 默认将数据（比如用户登录态）保存在内存中，此

模式读写速度最快，且避免了序列化与反序列化带来的性能

消耗，但缺点是重启后数据会丢失、无法在分布式环境中共

享数据。

我们项目中既然已经使用了 Redis，那么可以 参考官方文档

让 Sa-Token 整合 Redis，将用户的登录态等内容保存在

Redis 中。

此处选择 jackson 序列化方式整合 Redis，这样存到 Redis 的

数据是可读的：

https://sa-token.cc/doc.html#/start/example
https://sa-token.cc/doc.html#/up/integ-redis

<dependency>
 <groupId>cn.dev33</groupId>
 <artifactId>sa-token-redis-jackson</artifactId>
 <version>1.39.0</version>
</dependency>

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-pool2</artifactId>
</dependency>

2）了解 Sa-Token 的基本用法

Sa-Token 的使用方式比较简单，首先是用户登录时调用 login

方法，产生一个新的会话：

StpUtil.login(10001);

还可以给会话保存一些信息，比如登录用户的信息：

StpUtil.getSession().set("user", user)

接下来你就可以判断用户是否登录、获取用户信息了，可以

通过代码进行判断：

StpUtil.checkLogin();

StpUtil.getSession().get("user");

也可以参考 官方文档 ，使用注解进行鉴权：

@SaCheckLogin
@RequestMapping("info")
public String info() {
 return "查询用户信息";
}

这是 Sa-Token 最基本的用法，下面我们正式在项目中使用

Sa-Token。

3、新建空间账号体系

https://sa-token.cc/doc.html#/use/at-check

目前，我们的项目中其实存在两套权限校验体系。一套是最

开始就有的，对 user 表的角色进行校验，分为普通用户和管

理员；另一套是本节新学习的，对团队空间的权限进行校

验。

为了更轻松地扩展项目，减少对原有代码的改动，我们原有

的 user 表权限校验依然使用自定义注解 + AOP 的方式实

现。而团队空间权限校验，采用 Sa-Token 来管理。

相当于我们不是整个项目都交给 Sa-Token，只是把 Sa-Token

当做实现团队空间权限管理的工具罢了。

这种同一项目有多账号体系的情况下，不建议使用 Sa-Token

默认的账号体系，而是使用 Sa-Token 提供的 多账号认证特

性 ，可以将多套账号的授权给区分开，让它们互不干扰。

1）可以参考官方文档，使用 Kit 模式 实现多账号认证，在

auth 包下新建 StpKit.java ，定义空间账号体系：

@Component
public class StpKit {

 public static final String SPACE_TYPE = "space";

 public static final StpLogic DEFAULT = StpUtil.stpLogic;

 public static final StpLogic SPACE = new StpLogic(SPACE_TYPE);
}

之后就可以在代码中使用账号体系，以下是示例代码：

StpKit.SPACE.login(10001);

StpKit.SPACE.checkPermission("picture:edit");

StpKit.SPACE.getSession().set("user", "程序员鱼皮");

2）修改用户服务的 userLogin 方法，用户登录成功后，保存

登录态到 Sa-Token 的空间账号体系中：

https://sa-token.cc/doc.html#/up/many-account?id=_5%e3%80%81kit%e6%a8%a1%e5%bc%8f
https://sa-token.cc/doc.html#/up/many-account?id=_5%e3%80%81kit%e6%a8%a1%e5%bc%8f
https://sa-token.cc/doc.html#/up/many-account?id=_5%e3%80%81kit%e6%a8%a1%e5%bc%8f

 

request.getSession().setAttribute(USER_LOGIN_STATE, user);

StpKit.SPACE.login(user.getId());
StpKit.SPACE.getSession().set(USER_LOGIN_STATE, user);
return this.getLoginUserVO(user);

4、权限认证逻辑

Sa-Token 开发的核心是编写权限认证类，我们需要在该类中

实现 “如何根据登录用户 id 获取到用户已有的角色和权限列

表” 方法。当要判断某用户是否有某个角色或权限时，Sa-

Token 会先执行我们编写的方法，得到该用户的角色或权限列

表，然后跟需要的角色权限进行比对。

参考 官方文档 ，示例权限认证类如下：

@Component
public class StpInterfaceImpl implements StpInterface {

 @Override
 public List<String> getPermissionList(Object loginId, String logi

 List<String> list = new ArrayList<String>();
 list.add("user.add");
 list.add("user.update");
 list.add("user.get");
 list.add("art.*");
 return list;
 }

 @Override
 public List<String> getRoleList(Object loginId, String loginType)

 List<String> list = new ArrayList<String>();
 list.add("admin");
 list.add("super-admin");
 return list;
 }
}

Sa-Token 支持按照角色和权限校验，对于权限不多的项目，

基于角色校验即可；对于权限较多的项目，建议根据权限校

验。对于本项目，虽然权限并不多，但是考虑到扩展性，还

是 选择更细粒度的权限校验，业务含义会更明确。

https://sa-token.cc/doc.html#/use/jur-auth

观察上述代码我们会发现， getPermissionList 方法只提供了

loginId（登录用户 id）和 loginType（账号体系）两个参数。

这会给我们造成很大的难度：

我们光有用户 id 是没办法进行权限校验的，因为我们要给

图片操作和空间成员操作增加权限校验逻辑，还需要获取

到空间 id，才知道用户是否具有某个团队空间的权限。那

么如何获取到空间 id 呢？

如果要进行统一的权限校验，也包括了公共图库和私有空

间，更要命的是，公共图库是没有空间 id 的！这就意味着

要根据操作的图片情况动态判断。

所以我们要解决的关键问题有 2 个：

1. 如何在 Sa-Token 中获取当前请求操作的参数？

2. 如何编写一套权限校验逻辑，同时兼容公共图库、私有空

间和团队空间？

1）先看第一个问题，使用 Sa-Token 有 2 种方式 —— 注解

式和编程式。

如果使用注解式，那么在接口被调用时就会立刻触发 Sa-

Token 的权限校验，此时参数只能通过 Servlet 的请求对象传

递。

如果使用编程式，可以在代码任意位置执行权限校验，只要

在执行前将参数放到当前线程的上下文 ThreadLocal 对象

中，就能在鉴权时获取到了。

为了后续我们给接口添加鉴权更直观方便，我们选择注解式

鉴权。那就有一个关键问题，不同接口的请求参数是不同

的，有的请求参数有 spaceId、有的只有 pictureId，怎么办

呢？

我们可以定义一个 上下文类，用于统一接收请求中传递来的

参数：

@Data
public class SpaceUserAuthContext {

 private Long id;

 private Long pictureId;

 private Long spaceId;

 private Long spaceUserId;

 private Picture picture;

 private Space space;

 private SpaceUser spaceUser;
}

如何知道哪个请求包含了哪些字段呢？别忘了，我们每类操

作（图片 / 空间成员）的请求前缀都是固定的，可以从请求

路径中提取到要访问的是哪个 Controller，而每类 Controller

的请求参数，都是一致的。

举个例子，如果访问地址是 /api/picture/xxx ，那么一定是要

调用 PictureController 的接口，这些接口的 id 字段都表示

pictureId。我们就可以通过访问地址来决定应该给上下文传递

哪些字段，代码如下：

@Value("${server.servlet.context-path}")
private String contextPath;

private SpaceUserAuthContext getAuthContextByRequest() {
 HttpServletRequest request = ((ServletRequestAttributes) RequestC
 String contentType = request.getHeader(Header.CONTENT_TYPE.getVal
 SpaceUserAuthContext authRequest;

 if (ContentType.JSON.getValue().equals(contentType)) {
 String body = ServletUtil.getBody(request);
 authRequest = JSONUtil.toBean(body, SpaceUserAuthContext.clas
 } else {
 Map<String, String> paramMap = ServletUtil.getParamMap(reques
 authRequest = BeanUtil.toBean(paramMap, SpaceUserAuthContext.
 }

 Long id = authRequest.getId();
 if (ObjUtil.isNotNull(id)) {
 String requestUri = request.getRequestURI();
 String partUri = requestUri.replace(contextPath + "/", "");
 String moduleName = StrUtil.subBefore(partUri, "/", false);
 switch (moduleName) {

 

 case "picture":
 authRequest.setPictureId(id);
 break;
 case "spaceUser":
 authRequest.setSpaceUserId(id);
 break;
 case "space":
 authRequest.setSpaceId(id);
 break;
 default:
 }
 }
 return authRequest;
}

注意，上述代码中，我们使用 Hutool 的工具类 ServletUtil

从 HttpServletRequest 中获取到了参数信息，但是坑爹的

是，HttpServletRequest 的 body 值是个流，** 只支持读取

一次，读完就没了！** 所以为了解决这个问题，我们还要在

config 包下自定义请求包装类和请求包装类过滤器。这些就

是样板代码了，大家直接复制粘贴即可，不用编码。

RequestWrapper 请求包装类：

@Slf4j
public class RequestWrapper extends HttpServletRequestWrapper {

 private final String body;

 public RequestWrapper(HttpServletRequest request) {
 super(request);
 StringBuilder stringBuilder = new StringBuilder();
 try (InputStream inputStream = request.getInputStream(); Buff
 char[] charBuffer = new char[128];
 int bytesRead = -1;
 while ((bytesRead = bufferedReader.read(charBuffer)) > 0)
 stringBuilder.append(charBuffer, 0, bytesRead);
 }
 } catch (IOException ignored) {
 }
 body = stringBuilder.toString();
 }

 @Override
 public ServletInputStream getInputStream() throws IOException {
 final ByteArrayInputStream byteArrayInputStream = new ByteArr
 return new ServletInputStream() {
 @Override
 public boolean isFinished() {
 return false;
 }

 @Override
 public boolean isReady() {

 

 

 return false;
 }

 @Override
 public void setReadListener(ReadListener readListener) {
 }

 @Override
 public int read() throws IOException {
 return byteArrayInputStream.read();
 }
 };

 }

 @Override
 public BufferedReader getReader() throws IOException {
 return new BufferedReader(new InputStreamReader(this.getInput
 }

 public String getBody() {
 return this.body;
 }

}

HttpRequestWrapperFilter 请求包装过滤器：

@Order(1)
@Component
public class HttpRequestWrapperFilter implements Filter {

 @Override
 public void doFilter(ServletRequest request, ServletResponse resp
 if (request instanceof HttpServletRequest) {
 HttpServletRequest servletRequest = (HttpServletRequest)
 String contentType = servletRequest.getHeader(Header.CONT
 if (ContentType.JSON.getValue().equals(contentType)) {

 chain.doFilter(new RequestWrapper(servletRequest), re
 } else {
 chain.doFilter(request, response);
 }
 }
 }

}

这样我们就能正常获取到请求参数了~

2）编写通用的权限校验逻辑，兼容公共图库、私有空间和团

队空间

这个没啥好说的，就是写业务逻辑，而且是比较复杂的业务

逻辑，所以建议一定要先把业务流程梳理清楚，再编写代

码。

业务流程如下：

1. 校验登录类型：如果 loginType 不是 "space" ，直接返回

空权限列表。

2. 管理员权限处理：如果当前用户为管理员，直接返回管理

员权限列表。

3. 获取上下文对象：从请求中获取 SpaceUserAuthContext 上下

文，检查上下文字段是否为空。如果上下文中所有字段均

为空（如没有空间或图片信息），视为公共图库操作，直

接返回管理员权限列表。

4. 校验登录状态：通过 loginId 获取当前登录用户信息。如

果用户未登录，抛出未授权异常；否则获取用户的唯一标

识 userId ，用于后续权限判断。

5. 从上下文中优先获取 SpaceUser 对象：如果上下文中存在

SpaceUser 对象，直接根据其角色获取权限码列表。

6. 通过 spaceUserId 获取空间用户信息：如果上下文中存在

spaceUserId ：

查询对应的 SpaceUser 数据。如果未找到，抛出数据未找

到异常。

校验当前登录用户是否属于该空间，如果不是，返回空权

限列表。

否则，根据登录用户在该空间的角色，返回相应的权限码

列表。

7. 通过 spaceId 或 pictureId 获取空间或图片信息

如果 spaceId 不存在：使用 pictureId 查询图片信息，并

通过图片的 spaceId 继续判断权限；如果 pictureId 和

spaceId 均为空，默认视为管理员权限。

对于公共图库：如果图片是当前用户上传的，或者当前用

户为管理员，返回管理员权限列表；如果图片不是当前用

户上传的，返回仅允许查看的权限码。

8. 获取 Space 对象并判断空间类型：查询 Space 信息，如

果未找到空间数据，抛出数据未找到异常。否则根据空间

类型进行判断

私有空间：仅空间所有者和管理员有权限（即返回全部权

限），其他用户返回空权限列表。

团队空间：查询登录用户在该空间的角色，并返回对应的

权限码列表。如果用户不属于该空间，返回空权限列表。

根据业务流程编写代码：

public List<String> getPermissionList(Object loginId, String loginTyp

 if (!StpKit.SPACE_TYPE.equals(loginType)) {
 return new ArrayList<>();
 }

 List<String> ADMIN_PERMISSIONS = spaceUserAuthManager.getPermissi

 SpaceUserAuthContext authContext = getAuthContextByRequest();

 if (isAllFieldsNull(authContext)) {
 return ADMIN_PERMISSIONS;
 }

 User loginUser = (User) StpKit.SPACE.getSessionByLoginId(loginId)
 if (loginUser == null) {
 throw new BusinessException(ErrorCode.NO_AUTH_ERROR, "用户未登
 }
 Long userId = loginUser.getId();

 SpaceUser spaceUser = authContext.getSpaceUser();
 if (spaceUser != null) {
 return spaceUserAuthManager.getPermissionsByRole(spaceUser.ge
 }

 Long spaceUserId = authContext.getSpaceUserId();
 if (spaceUserId != null) {
 spaceUser = spaceUserService.getById(spaceUserId);
 if (spaceUser == null) {
 throw new BusinessException(ErrorCode.NOT_FOUND_ERROR, "未
 }

 SpaceUser loginSpaceUser = spaceUserService.lambdaQuery()
 .eq(SpaceUser::getSpaceId, spaceUser.getSpaceId())
 .eq(SpaceUser::getUserId, userId)
 .one();
 if (loginSpaceUser == null) {
 return new ArrayList<>();

 }

 return spaceUserAuthManager.getPermissionsByRole(loginSpaceUs
 }

 Long spaceId = authContext.getSpaceId();
 if (spaceId == null) {

 Long pictureId = authContext.getPictureId();

 if (pictureId == null) {
 return ADMIN_PERMISSIONS;
 }
 Picture picture = pictureService.lambdaQuery()
 .eq(Picture::getId, pictureId)
 .select(Picture::getId, Picture::getSpaceId, Picture:
 .one();
 if (picture == null) {
 throw new BusinessException(ErrorCode.NOT_FOUND_ERROR, "未
 }
 spaceId = picture.getSpaceId();

 if (spaceId == null) {
 if (picture.getUserId().equals(userId) || userService.isA
 return ADMIN_PERMISSIONS;
 } else {

 return Collections.singletonList(SpaceUserPermissionC
 }
 }
 }

 Space space = spaceService.getById(spaceId);
 if (space == null) {
 throw new BusinessException(ErrorCode.NOT_FOUND_ERROR, "未找到
 }

 if (space.getSpaceType() == SpaceTypeEnum.PRIVATE.getValue()) {

 if (space.getUserId().equals(userId) || userService.isAdmin(l
 return ADMIN_PERMISSIONS;
 } else {
 return new ArrayList<>();
 }
 } else {

 spaceUser = spaceUserService.lambdaQuery()
 .eq(SpaceUser::getSpaceId, spaceId)
 .eq(SpaceUser::getUserId, userId)
 .one();
 if (spaceUser == null) {
 return new ArrayList<>();
 }
 return spaceUserAuthManager.getPermissionsByRole(spaceUser.ge
 }
}

上述代码依赖 “判断所有字段都为空” 的方法，通过反射获取

对象的所有字段，进行判空：

 

 

private boolean isAllFieldsNull(Object object) {
 if (object == null) {
 return true;
 }

 return Arrays.stream(ReflectUtil.getFields(object.getClass()))

 .map(field -> ReflectUtil.getFieldValue(object, field))

 .allMatch(ObjectUtil::isEmpty);
}

OK，这就是 Sa-Token 动态权限校验的核心代码，你会发现

编写一套统一的权限校验逻辑并不容易，所以实际项目中要

按需使用 第三方权限校验框架。

💡 注意，采用注解式鉴权 + 通过请求对象获取参数时，可能

会重复查询数据库。比如业务代码中已经有根据 id 查询空间

信息的代码了，但为了权限校验，也查库获取了一次空间信

息，会对性能造成影响。如果想更灵活、更高性能地实现鉴

权，可以考虑使用编程式鉴权。获取权限的方法和上下文类

都是可以复用的，只需要将 getAuthContextByRequest 方法的逻

辑改为从 ThreadLocal 上下文中获取即可。

基于 ThreadLocal 实现上下文管理的示例代码：

public class SaTokenContextHolder {

 private static final ThreadLocal<Map<String, Object>> CONTEXT = T

 public static void set(String key, Object value) {
 CONTEXT.get().put(key, value);
 }

 public static Object get(String key) {
 return CONTEXT.get().get(key);
 }

 public static void clear() {
 CONTEXT.remove();
 }
}

5、权限校验注解

 

默认情况下使用 注解式鉴权 ，需要新建配置类：

但由于我们使用了多账号体系，每次使用注解时都要指定账

号体系的 loginType，会比较麻烦：

@SaCheckLogin(type = StpUserUtil.TYPE)

所以可以参考官方文档，使用 注解合并 简化代码。在

auth.annotation 包下新建 Sa-Token 配置类，开启注解鉴权和

注解合并：

@Configuration
public class SaTokenConfigure implements WebMvcConfigurer {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {

 registry.addInterceptor(new SaInterceptor()).addPathPatterns(
 }

 @PostConstruct
 public void rewriteSaStrategy() {

 SaAnnotationStrategy.instance.getAnnotation = (element, annot
 return AnnotatedElementUtils.getMergedAnnotation(element,
 };
 }
}

然后参考 官方提供的示例代码 ，在 auth.annotation 包下新

建空间账号体系的鉴权注解：

@SaCheckPermission(type = StpKit.SPACE_TYPE)
@Retention(RetentionPolicy.RUNTIME)

https://sa-token.cc/doc.html#/use/at-check
https://sa-token.cc/doc.html#/up/many-account?id=_7%e3%80%81%e4%bd%bf%e7%94%a8%e6%b3%a8%e8%a7%a3%e5%90%88%e5%b9%b6%e7%ae%80%e5%8c%96%e4%bb%a3%e7%a0%81
https://gitee.com/dromara/sa-token/blob/master/sa-token-demo/sa-token-demo-case/src/main/java/com/pj/satoken/merge_annotation/SaUserCheckPermission.java#

@Target({ElementType.METHOD, ElementType.TYPE})
public @interface SaSpaceCheckPermission {

 @AliasFor(annotation = SaCheckPermission.class)
 String[] value() default {};

 @AliasFor(annotation = SaCheckPermission.class)
 SaMode mode() default SaMode.AND;

 @AliasFor(annotation = SaCheckPermission.class)
 String[] orRole() default {};

}

之后就可以直接使用该注解了。

6、应用权限注解

认真核对一遍各个操作接口的代码、以及接口调用的 Service

代码，包括图片操作 PictureController 和 PictureService、空

间成员操作 SpaceUserController 和 SpaceUserService。

1）给 Controller 接口补充上合适的权限注解，

PictureController 图片接口：

@PostMapping("/upload")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_U
public BaseResponse<PictureVO> uploadPicture() {
}

@PostMapping("/upload/url")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_U
public BaseResponse<PictureVO> uploadPictureByUrl() {
}

@PostMapping("/delete")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_D
public BaseResponse<Boolean> deletePicture() {
}

@PostMapping("/edit")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_E
public BaseResponse<Boolean> editPicture() {
}

@PostMapping("/search/color")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_V
public BaseResponse<List<PictureVO>> searchPictureByColor() {
}

 

 

@PostMapping("/edit/batch")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_E
public BaseResponse<Boolean> editPictureByBatch() {
}

@PostMapping("/out_painting/create_task")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.PICTURE_E
public BaseResponse<CreateOutPaintingTaskResponse> createPictureOutPa
}

SpaceUserController 接口：

@PostMapping("/add")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.SPACE_USE
public BaseResponse<Long> addSpaceUser() {
}

@PostMapping("/delete")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.SPACE_USE
public BaseResponse<Boolean> deleteSpaceUser() {
}

@PostMapping("/get")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.SPACE_USE
public BaseResponse<SpaceUser> getSpaceUser() {
}

@PostMapping("/list")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.SPACE_USE
public BaseResponse<List<SpaceUserVO>> listSpaceUser() {
}

@PostMapping("/edit")
@SaSpaceCheckPermission(value = SpaceUserPermissionConstant.SPACE_USE
public BaseResponse<Boolean> editSpaceUser() {
}

2）移除这些接口和相关服务原本的权限校验逻辑，比如

PictureService#checkPictureAuth ，确保该方法变成了灰色（未被

使用）。

还有 PictureServiceImpl 的 uploadPicture 方法中的权限校

验，也要注释掉：

 

3）注意，只要加上了 Sa-Token 注解，框架就会强制要求用

户登录，未登录会抛出异常。所以针对未登录也可以调用的

接口，需要改为编程式权限校验，比如 getPictureVOById 和

listPictureVOByPage 方法。

@GetMapping("/get/vo")
public BaseResponse<PictureVO> getPictureVOById(long id, HttpServletR
 ThrowUtils.throwIf(id <= 0, ErrorCode.PARAMS_ERROR);

 Picture picture = pictureService.getById(id);
 ThrowUtils.throwIf(picture == null, ErrorCode.NOT_FOUND_ERROR);

 Space space = null;
 Long spaceId = picture.getSpaceId();
 if (spaceId != null) {
 boolean hasPermission = StpKit.SPACE.hasPermission(SpaceUserP
 ThrowUtils.throwIf(!hasPermission, ErrorCode.NO_AUTH_ERROR);
 }
 PictureVO pictureVO = pictureService.getPictureVO(picture, reques

 return ResultUtils.success(pictureVO);
}

@PostMapping("/list/page/vo")
public BaseResponse<Page<PictureVO>> listPictureVOByPage(@RequestBody
 long current = pictureQueryRequest.getCurrent();
 long size = pictureQueryRequest.getPageSize();

 ThrowUtils.throwIf(size > 20, ErrorCode.PARAMS_ERROR);

 Long spaceId = pictureQueryRequest.getSpaceId();

 if (spaceId == null) {

 pictureQueryRequest.setReviewStatus(PictureReviewStatusEnum.P
 pictureQueryRequest.setNullSpaceId(true);
 } else {
 boolean hasPermission = StpKit.SPACE.hasPermission(SpaceUserP
 ThrowUtils.throwIf(!hasPermission, ErrorCode.NO_AUTH_ERROR);
 }

 Page<Picture> picturePage = pictureService.page(new Page<>(curren

 return ResultUtils.success(pictureService.getPictureVOPage(pictur
}

7、全局异常处理

如果 Sa-Token 校验用户没有符合要求的权限、或者用户未登

录，就会抛出它定义的异常， 参考文档 。

https://sa-token.cc/doc.html#/fun/exception-code?id=%e8%8e%b7%e5%8f%96%e5%bc%82%e5%b8%b8%e7%bb%86%e5%88%86%e7%8a%b6%e6%80%81%e7%a0%81

 

需要将框架的异常全局处理为我们自己定义的业务异常，在

全局异常处理器中添加代码：

@ExceptionHandler(NotLoginException.class)
public BaseResponse<?> notLoginException(NotLoginException e) {
 log.error("NotLoginException", e);
 return ResultUtils.error(ErrorCode.NOT_LOGIN_ERROR, e.getMessage(
}

@ExceptionHandler(NotPermissionException.class)
public BaseResponse<?> notPermissionExceptionHandler(NotPermissionExc
 log.error("NotPermissionException", e);
 return ResultUtils.error(ErrorCode.NO_AUTH_ERROR, e.getMessage())
}

8、补充获取权限的接口

前面写的都是后端权限校验的代码，但对于用户来说，如果

没有空间图片的编辑权限，进入空间详情页时不应该能看到

编辑按钮。也就是说，前端也需要根据用户的权限来进行一

些页面内容的展示和隐藏。

因此，后端需要将用户具有的权限返回给前端，帮助前端进

行判断，这样就不用让前端编写复杂的角色和权限校验逻辑

了。

思考下具体的使用场景：如果是团队空间（空间详情页）或

团队空间的图片（图片详情页），返回给前端用户具有的权

限（比如能否编辑、能否上传、能否删除、能否管理成

员）。

1）比起新写一个获取权限的接口，我们可以直接在返回图片

或空间详情时，额外传递权限列表。给 SpaceVO 和

PictureVO 新增权限列表字段：

private List<String> permissionList = new ArrayList<>();

2）在 SpaceUserAuthManager 中新增获取权限列表的方

法，注意要区分公共图库、私有空间和团队空间，对于有权

限的情况，可以返回 “管理员权限” 列表。

 

public List<String> getPermissionList(Space space, User loginUser) {
 if (loginUser == null) {
 return new ArrayList<>();
 }

 List<String> ADMIN_PERMISSIONS = getPermissionsByRole(SpaceRoleEn

 if (space == null) {
 if (userService.isAdmin(loginUser)) {
 return ADMIN_PERMISSIONS;
 }
 return new ArrayList<>();
 }
 SpaceTypeEnum spaceTypeEnum = SpaceTypeEnum.getEnumByValue(space.
 if (spaceTypeEnum == null) {
 return new ArrayList<>();
 }

 switch (spaceTypeEnum) {
 case PRIVATE:

 if (space.getUserId().equals(loginUser.getId()) || userSe
 return ADMIN_PERMISSIONS;
 } else {
 return new ArrayList<>();
 }
 case TEAM:

 SpaceUser spaceUser = spaceUserService.lambdaQuery()
 .eq(SpaceUser::getSpaceId, space.getId())
 .eq(SpaceUser::getUserId, loginUser.getId())
 .one();
 if (spaceUser == null) {
 return new ArrayList<>();
 } else {
 return getPermissionsByRole(spaceUser.getSpaceRole())
 }
 }
 return new ArrayList<>();
}

3）修改获取空间详情和图片详情的接口 getSpaceVOById、

getPictureVOById，增加获取权限列表的逻辑。

获取空间详情接口：

@GetMapping("/get/vo")
public BaseResponse<SpaceVO> getSpaceVOById(long id, HttpServletReque
 ThrowUtils.throwIf(id <= 0, ErrorCode.PARAMS_ERROR);

 Space space = spaceService.getById(id);
 ThrowUtils.throwIf(space == null, ErrorCode.NOT_FOUND_ERROR);
 SpaceVO spaceVO = spaceService.getSpaceVO(space, request);
 User loginUser = userService.getLoginUser(request);
 List<String> permissionList = spaceUserAuthManager.getPermissionL
 spaceVO.setPermissionList(permissionList);

 

 

 return ResultUtils.success(spaceVO);
}

获取图片详情接口，注意即使空间 id 不存在（公共图库）也

要获取权限列表，管理员会获取到全部权限，这样前端才能

顺利展示出操作按钮：

@GetMapping("/get/vo")
public BaseResponse<PictureVO> getPictureVOById(long id, HttpServletR
 ThrowUtils.throwIf(id <= 0, ErrorCode.PARAMS_ERROR);

 Picture picture = pictureService.getById(id);
 ThrowUtils.throwIf(picture == null, ErrorCode.NOT_FOUND_ERROR);

 Space space = null;
 Long spaceId = picture.getSpaceId();
 if (spaceId != null) {
 boolean hasPermission = StpKit.SPACE.hasPermission(SpaceUserP
 ThrowUtils.throwIf(!hasPermission, ErrorCode.NO_AUTH_ERROR);
 space = spaceService.getById(spaceId);
 ThrowUtils.throwIf(space == null, ErrorCode.NOT_FOUND_ERROR,
 }

 User loginUser = userService.getLoginUser(request);
 List<String> permissionList = spaceUserAuthManager.getPermissionL
 PictureVO pictureVO = pictureService.getPictureVO(picture, reques
 pictureVO.setPermissionList(permissionList);

 return ResultUtils.success(pictureVO);
}

9、接口测试

终于开发完了，我们会发现，细节实在是太多了，所以 一定

要进行严格的测试！！！

用不同权限的用户去验证不同的空间类别（公共图库、私有

空间、团队空间）。

如何测试呢？

大家用的比较多的就是单元测试，但是单元测试想要测试携

带登录态的 Controller 接口是比较麻烦的。所以我们可以采

用自动化接口测试，比如 Postman 等。

此处为了方便，我们直接使用 IDEA 自带的 REST API 测试，

可以将测试参数和测试接口保存为文件，每次修改代码后，

改改参数，执行文件就能整体测试了。

由于要测试的情况较多，鱼皮给大家准备好了测试代码，直

接下载使用即可：📎httpTest.zip

至此，空间成员权限控制开发完成，大家会发现还是挺麻烦

的。其实如果没有公共图库的概念的话，开发起来就轻松很

多。因此 Sa-Token 等权限框架要按需使用，更适合复杂的、

企业内部的权限管理系统。

如果你想开发起来更轻松一些，推荐其他的实现方式：

1. 直接封装权限校验方法，在业务代码中调用

2. 将团队空间图片的增删改查提取为独立的接口，单独进行

权限校验，不影响公共图库

扩展

1）可以给空间操作（SpaceController）、空间分析操作

（SpaceAnalyzeController）增加统一的权限校验

空间数据管理

根据需求和方案设计，我们要将旗舰版团队空间的图片数据

进行单独管理，每个团队空间的图片数据存储到一张单独的

表中，也就是 分表。

1、什么是分库分表？

分库分表是一种将数据拆分到多个数据库或数据表中的设计

策略，主要用于解决随着业务数据量和访问量增长带来的数

https://yuyuanweb.yuque.com/attachments/yuque/0/2024/zip/398476/1735475537929-926babdb-fe15-4718-a4bf-8cb1751ed754.zip

据库性能问题。

通过分库分表，可以减小单库或单表的数据量和访问压力，

从而提高查询和写入效率、增强系统的高并发能力、优化大

数据量下的性能表现；同时降低单点故障风险，实现更好的

系统扩展性和容灾能力。

2、分库分表实现

如果让我们自己实现分库分表，应该怎么做呢？

思路主要是基于业务需求设计 数据分片规则，将数据按一定

策略（如取模、哈希、范围或时间）分散存储到多个库或表

中，同时开发路由逻辑来决定查询或写入操作的目标库表。

简单来说，就是将数据写到不同的表、并且从相同的表读取

数据，其实通过给 SQL 表名拼接动态参数就能实现：

select * from table_${分片唯一标识}

但这只是最简单的情况，实际上，分库分表还涉及跨库表查

询、事务一致性、分页聚合等复杂场景，还可能需要配套设

计监控、扩容和迁移方案以确保系统的可维护性和扩展性。

所以，不建议自己实现分库分表。本项目中，鱼皮将使用主

流的分库分表框架 Apache ShardingSphere 带大家实现。

3、ShardingSphere 分库分表

Apache ShardingSphere 提供了开箱即用的分片策略、灵活

的配置能力以及对跨库查询、事务一致性、读写分离等复杂

功能的全面支持。

https://shardingsphere.apache.org/

它又分为 2 大核心模块 ShardingSphere-JDBC 和

ShardingSphere-Proxy，我用一张表格来列举 2 者的区别：

维

度

ShardingSphere

JDBC

ShardingSphere

Proxy

运

行

方

式

嵌入式运行在应用内

部

独立代理，运行在应

用与数据库之间

性

能

低网络开销，性能较

高

引入网络开销，性能

略低

支

持

语

言

仅支持 Java
支持多语言（Java、

Python、Go 等）

配

置

管

理

分布式配置较复杂
支持集中配置和动态

管理

扩

展

性

随着应用扩展，需单

独调整配置

代理服务集中化管

理，扩展性强

适

用

场

景

单体或小型系统，对

性能要求高的场景

多语言、大型分布式

系统或需要统一管理

的场景

对大多数 Java 项目来说，选择 ShardingSphere-JDBC 就足

够了；对于跨语言的大型分布式项目、或者公司内有技术部

门统一管理基础设施的情况下，再考虑使用 ShardingSphere-

Proxy。

本项目也将使用 ShardingSphere-JDBC，在依赖文件中引

入：

 

<dependency>
 <groupId>org.apache.shardingsphere</groupId>
 <artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifac
 <version>5.2.0</version>
</dependency>

4、分库分表策略 - 静态分表

分库分表的策略总体分为 2 类：静态分表和动态分表，下面

先讲静态分表。

在设计阶段，分表的数量和规则就是固定的，不会根据业务

增长动态调整，比如 picture_0、picture_1。

分片规则通常基于某一字段（如图片 id）通过简单规则（如

取模、范围）来决定数据存储在哪个表或库中。

这种方式的优点是简单、好理解；缺点是不利于扩展，随着

数据量增长，可能需要手动调整分表数量并迁移数据。

举个例子，图片表按图片 id 对 4 取模拆分：

String tableName = "picture_" + (pictureId % 4);

静态分表的实现很简单，直接在 application.yml 中编写

ShardingSphere 的配置就能完成分库分表，比如：

rules:
 sharding:
 tables:
 picture:
 actualDataNodes: ds0.picture_${0..2}
 tableStrategy:
 standard:
 shardingColumn: pictureId
 shardingAlgorithmName: pictureIdMod
 shardingAlgorithms:
 pictureIdMod:
 type: INLINE
 props:
 algorithm-expression: picture_${pictureId % 3}

你甚至不需要修改任何业务代码，在查询 picture 表（一般叫

逻辑表）时，框架会自动帮你修改 SQL，根据 pictureId 将查

询请求路由到不同的表中。如果要进行分页多条数据查询，

你只需要写一条查询逻辑表的 SQL 语句即可：

SELECT * FROM picture;

实际上，ShardingSphere 将查询逻辑表 picture 的请求自动

路由到所有实际分表 picture_1、picture_2 ... picture_N，获取

到数据后，在中间件层自动合并结果并返回给应用程序。

5、分库分表策略 - 动态分表

动态分表是指分表的数量可以根据业务需求或数据量动态增

加，表的结构和规则是运行时动态生成的。举个例子，根据

时间动态创建 picture_2025_01、picture_2025_02。

String tableName = "picture_" + LocalDate.now().format(
 DateTimeFormatter.ofPattern("yyyy_MM")
);

显然，动态分表更灵活、扩展性强，适合数据量快速增长的

场景；但缺点是实现更复杂，需要动态生成表并维护表的元

信息。如果没有控制好，说不定分表特别多，反而影响了数

据库的性能。

动态分表的实现就比较麻烦了，首先要自定义分表算法类，

还要在代码中编写动态创建表的逻辑。

自定义分表算法类：

public class PictureShardingAlgorithm implements StandardShardingAlgo

 @Override
 public String doSharding(Collection<String> availableTargetNames,

 }

 @Override
 public Collection<String> doSharding(Collection<String> collectio
 return new ArrayList<>();
 }

 @Override
 public Properties getProps() {
 return null;
 }

 

 

 @Override
 public void init(Properties properties) {

 }
}

对于我们的项目，由于空间是用户动态创建的，显然要使用

动态分表，下面来实现。

6、动态分表算法开发

根据需求，我们希望将每个旗舰版空间的图片单独存放在一

起，显然是按照 spaceId 分表，那么分表的名称规则为

picture_${spaceId} 。

1）首先编写动态分表的配置，包括数据库连接、分表规则、

分表算法：

spring:

 shardingsphere:
 datasource:
 names: yu_picture
 yu_picture:
 type: com.zaxxer.hikari.HikariDataSource
 driver-class-name: com.mysql.cj.jdbc.Driver
 url: jdbc:mysql://localhost:3306/yu_picture
 username: root
 password: 123456
 rules:
 sharding:
 tables:
 picture:
 actual-data-nodes: yu_picture.picture
 table-strategy:
 standard:
 sharding-column: spaceId
 sharding-algorithm-name: picture_sharding_algorithm
 sharding-algorithms:
 picture_sharding_algorithm:
 type: CLASS_BASED
 props:
 strategy: standard
 algorithmClassName: com.yupi.yupicturebackend.manager.s
 props:
 sql-show: true

其中，有几个细节需要注意：

1. actual-data-nodes 一般情况下是指定一段分表的范围，比

如 yu_picture.picture_${0..9999} 表示有 picture_0 ~

picture_9999 这 10000 张分表。ShardingSphere 在执行

分表查询时会校验要查询的表（比如 picture_123456789）

是否在 actual-data-nodes 的配置范围内。但是由于

spaceId 是长整型，范围太大，无法通过指定范围将所有

分表名称包含，导致无法通过框架内置的校验。所以此处

将 actual-data-nodes 的值设置为逻辑表

yu_picture.picture 。

2. 指定分表字段为 spaceId、分表算法为自定义的分片算法

picture_sharding_algorithm 。

3. 配置自定义分片算法，采用基于自定义类的方式实现，算

法的类名配置必须为类的绝对路径。

2）编写图片分表算法类，必须实现 StandardShardingAlgorithm

接口。核心是编写 doSharding 方法，根据 spaceId 获取到实

际要查询的分表名，如果 spaceId 不存在分表（比如是私有

空间）或者 spaceId 为空（公共图库），那么就从原表（逻

辑表）picture 查询。

之所以要做兼容，是因为虽然我们设计上只对团队空间进行

分库分表，但是一旦引入了分库分表框架，查询 picture 表时

就会触发分表逻辑。

在 manager.sharding 包下新建分表算法类：

public class PictureShardingAlgorithm implements StandardShardingAlgo

 @Override
 public String doSharding(Collection<String> availableTargetNames,
 Long spaceId = preciseShardingValue.getValue();
 String logicTableName = preciseShardingValue.getLogicTableNam

 if (spaceId == null) {
 return logicTableName;
 }

 String realTableName = "picture_" + spaceId;
 if (availableTargetNames.contains(realTableName)) {
 return realTableName;
 } else {
 return logicTableName;
 }
 }

 

 @Override
 public Collection<String> doSharding(Collection<String> collectio
 return new ArrayList<>();
 }

 @Override
 public Properties getProps() {
 return null;
 }

 @Override
 public void init(Properties properties) {

 }
}

3）光有上述代码还不能完成动态分表，因为

availableTargetNames（可用的分表）始终为逻辑表名

picture ！原因在于 ShardingSphere 在分片逻辑初始化时默

认获取的是配置的 actual-data-nodes 中的目标表名，也就是

我们写的固定值。这样还是无法通过 ShardingSphere 的查询

校验，我们也没办法判断 spaceId 是否要分表：

if (availableTargetNames.contains(realTableName)) {
 return realTableName;
} else {
 return logicTableName;
}

既然框架自身不支持动态维护分表，那我们可以写一个分表

管理器，自己来维护分表列表，并更新到 ShardingSphere 的

actual-data-nodes 配置中。

在 manager.sharding 包下新建分表管理器类：

@Component
@Slf4j
public class DynamicShardingManager {

 @Resource
 private DataSource dataSource;

 @Resource
 private SpaceService spaceService;

 private static final String LOGIC_TABLE_NAME = "picture";

 private static final String DATABASE_NAME = "logic_db";

 @PostConstruct
 public void initialize() {
 log.info("初始化动态分表配置...");
 updateShardingTableNodes();
 }

 private Set<String> fetchAllPictureTableNames() {

 Set<Long> spaceIds = spaceService.lambdaQuery()
 .eq(Space::getSpaceType, SpaceTypeEnum.TEAM.getValue(
 .list()
 .stream()
 .map(Space::getId)
 .collect(Collectors.toSet());
 Set<String> tableNames = spaceIds.stream()
 .map(spaceId -> LOGIC_TABLE_NAME + "_" + spaceId)
 .collect(Collectors.toSet());
 tableNames.add(LOGIC_TABLE_NAME);
 return tableNames;
 }

 private void updateShardingTableNodes() {
 Set<String> tableNames = fetchAllPictureTableNames();
 String newActualDataNodes = tableNames.stream()
 .map(tableName -> "yu_picture." + tableName)
 .collect(Collectors.joining(","));
 log.info("动态分表 actual-data-nodes 配置: {}", newActualDataN

 ContextManager contextManager = getContextManager();
 ShardingSphereRuleMetaData ruleMetaData = contextManager.getM
 .getMetaData()
 .getDatabases()
 .get(DATABASE_NAME)
 .getRuleMetaData();

 Optional<ShardingRule> shardingRule = ruleMetaData.findSingle
 if (shardingRule.isPresent()) {
 ShardingRuleConfiguration ruleConfig = (ShardingRuleConfi
 List<ShardingTableRuleConfiguration> updatedRules = ruleC
 .stream()
 .map(oldTableRule -> {
 if (LOGIC_TABLE_NAME.equals(oldTableRule.getL
 ShardingTableRuleConfiguration newTableRu
 newTableRuleConfig.setDatabaseShardingStr
 newTableRuleConfig.setTableShardingStrate
 newTableRuleConfig.setKeyGenerateStrategy
 newTableRuleConfig.setAuditStrategy(oldTa
 return newTableRuleConfig;
 }
 return oldTableRule;
 })
 .collect(Collectors.toList());
 ruleConfig.setTables(updatedRules);
 contextManager.alterRuleConfiguration(DATABASE_NAME, Coll
 contextManager.reloadDatabase(DATABASE_NAME);
 log.info("动态分表规则更新成功！");
 } else {
 log.error("未找到 ShardingSphere 的分片规则配置，动态分表更新
 }
 }

 

 private ContextManager getContextManager() {
 try (ShardingSphereConnection connection = dataSource.getConn
 return connection.getContextManager();
 } catch (SQLException e) {
 throw new RuntimeException("获取 ShardingSphere ContextMan
 }
 }
}

上述代码虽然看起来比较复杂，但其实不难理解，主要做了

这么几件事：

1. 将管理器注册为 Bean，通过 @PostConstruct 注解，在

Bean 加载后获取所有的分表并更新配置。

2. 编写获取分表列表的方法，从数据库中查询符合要求的空

间列表，再补充上逻辑表，就得到了完整的分表列表。

3. 更新 ShardingSphere 的 actual-data-nodes 动态表名配

置。获取到 ShardingSphere 的 ContextManager，找到配

置文件中的那条规则进行更新即可。

4）动态创建分表

在分表管理器中新增动态创建分表的方法，通过拼接 SQL 的

方式创建出和 picture 表结构一样的分表，创建新的分表后记

得更新分表节点。代码如下：

public void createSpacePictureTable(Space space) {

 if (space.getSpaceType() == SpaceTypeEnum.TEAM.getValue() && spac
 Long spaceId = space.getId();
 String tableName = "picture_" + spaceId;

 String createTableSql = "CREATE TABLE " + tableName + " LIKE
 try {
 SqlRunner.db().update(createTableSql);

 updateShardingTableNodes();
 } catch (Exception e) {
 log.error("创建图片空间分表失败，空间 id = {}", space.getId
 }
 }
}

 

注意，想要使用 MyBatis Plus 的 SqlRunner，必须要开启配

置：

mybatis-plus:
 global-config:
 enable-sql-runner: true

然后在创建空间时，调用该方法：

if (SpaceTypeEnum.TEAM.getValue() == spaceAddRequest.getSpaceType())
 SpaceUser spaceUser = new SpaceUser();
 spaceUser.setSpaceId(space.getId());
 spaceUser.setUserId(userId);
 spaceUser.setSpaceRole(SpaceRoleEnum.ADMIN.getValue());
 result = spaceUserService.save(spaceUser);
 ThrowUtils.throwIf(!result, ErrorCode.OPERATION_ERROR, "创建团队成
}

dynamicShardingManager.createSpacePictureTable(space);

return space.getId();

至此，动态分表就开发完成了。

💡 其实 ShardingSphere 还提供了 hint 强制分表路由机制

来实现动态分表，允许在代码中强制指定具体的物理表，从

而解决动态分表问题。但缺点是需要在每次查询或者操作数

据时都显式设置表名，会给代码增加很多额外逻辑，不够优

雅。所以不采用，大家了解一下即可。

7、测试

分表是个对系统影响很大的操作，所以要进行严格的测试。

如果启动项目时出现了循环依赖：

可以添加 Lazy 注解解决：

@Resource
@Lazy
private DynamicShardingManager dynamicShardingManager;

1）单独查询某个图片，不指定 spaceId 查询条件时，会自动

查所有的 picture 表：

历史数据会自动兼容，只要查到的 spaceId 没有分表，都会

查原来的 picture 表。只有指定 spaceId 且存在分表时，才会

查询特定的单张分表。

2）查询图片列表，不指定 spaceId 或 nullSpaceId（查询

spaceId 为 null 的值）时，会自动查所有的 picture 表。所以

查询时间会随着分表数增加：

3）测试数据插入。插入时如果想往公共空间插入（不指定

spaceId），就会报错，因为 ShardingSphere 不知道要把数

据插入到哪个表中。

这就意味着，如果你要使用分表，spaceId 必须不能为

null！

为了解决这个问题，插入时一定要指定 spaceId，可以约定公

共空间的 spaceId 都为 0，并且在插入时为 spaceId 设置默认

值 0。

if (spaceId == null) {
 picture.setSpaceId(0L);
}

注意，增删改查时都要补充 spaceId，才能避免报错和多表查

询影响效率。

比如查询单个图片，改为通过 QueryWrapper 指定 spaceId

查询：

QueryWrapper<Picture> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("id", id)
 .eq("spaceId", spaceId);

Picture picture = pictureService.getOne(queryWrapper);

构造图片分页查询条件时，如果查询公共图库，spaceId 改为

0：

queryWrapper.eq(nullSpaceId, "spaceId", 0);

更新 / 批量更新图片时，设置 spaceId 作为查询条件：

UpdateWrapper<Picture> updateWrapper = new UpdateWrapper<>();
updateWrapper.eq("id", picture.getId())
 .eq("spaceId", xxx);

boolean result = pictureService.update(picture, updateWrapper);

删除图片时，设置 spaceId 作为查询条件：

QueryWrapper<Picture> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("id", id)
 .eq("spaceId", spaceId);

 

boolean result = pictureService.remove(queryWrapper);

注意，分表后，picture 的 spaceId 将不能修改！！！

经过开发和测试，你会发现动态分库分表的实现非常麻烦。

某些单表的查询性能是高了，但整体查询的性能可能会减

少，所以原则上 非必要不分表，一定要找到合适的应用场

景。

考虑到让更多同学后续直接部署项目，降低理解成本，教程

中就不带大家实际执行上述改造细节了，并且我再教大家一

种可以关闭分库分表的方法。

8、关闭分库分表（可选）

1）启动类排除依赖（配置文件可以不注释）：

@SpringBootApplication(exclude = {ShardingSphereAutoConfiguration.cla

2）注释掉分库分表管理器组件 DynamicShardingManager：

3）注释掉使用 DynamicShardingManager 方法的代码，比

如空间服务中对其的引用、创建分表的代码：

参考文章

关于动态更新 actual-data-nodes：

https://www.yuque.com/linghengqian/meve2v/cgi5en

相关 issue：

https://github.com/apache/shardingsphere/issues/2150

3

https://www.yuque.com/linghengqian/meve2v/cgi5en
https://github.com/apache/shardingsphere/issues/21503
https://github.com/apache/shardingsphere/issues/21503

开源社区的讨论：

https://github.com/apache/shardingsphere/discussions/

12258#discussioncomment-3917927

四、前端开发
团队空间的前端开发工作量不大，因为绝大多数页面都可以

复用私有空间。

基础代码

首先根据后端的枚举类和常量，定义空间类型相关常量、空

间角色相关常量、空间权限常量：

export const SPACE_TYPE_ENUM = {
 PRIVATE: 0,
 TEAM: 1,
}

export const SPACE_TYPE_MAP: Record<number, string> = {
 0: '私有空间',
 1: '团队空间',
}

export const SPACE_TYPE_OPTIONS = Object.keys(SPACE_TYPE_MAP).map((ke
 const value = Number(key)
 return {
 label: SPACE_TYPE_MAP[value],
 value,
 }
})

export const SPACE_ROLE_ENUM = {
 VIEWER: "viewer",
 EDITOR: "editor",
 ADMIN: "admin",
} as const;

export const SPACE_ROLE_MAP: Record<string, string> = {
 viewer: "浏览者",
 editor: "编辑者",
 admin: "管理员",
};

export const SPACE_ROLE_OPTIONS = Object.keys(SPACE_ROLE_MAP).map((ke
 return {
 label: SPACE_ROLE_MAP[key],
 value: key,
 };

https://github.com/apache/shardingsphere/discussions/12258#discussioncomment-3917927
https://github.com/apache/shardingsphere/discussions/12258#discussioncomment-3917927

 

 

});

export const SPACE_PERMISSION_ENUM = {
 SPACE_USER_MANAGE: "spaceUser:manage",
 PICTURE_VIEW: "picture:view",
 PICTURE_UPLOAD: "picture:upload",
 PICTURE_EDIT: "picture:edit",
 PICTURE_DELETE: "picture:delete",
} as const;

创建团队空间

1、创建团队空间页面

可以复用创建私有空间页面，通过请求参数的 type 字段来区

分创建团队空间（type=1）还是私有空间（不传 type 或为

0）。

1）创建私有空间页面新增空间类别变量：

const spaceType = computed(() => {
 if (route.query?.type) {
 return Number(route.query.type)
 }
 return SPACE_TYPE_ENUM.PRIVATE
})

2）提交表单时，额外传递 spaceType 字段：

res = await addSpaceUsingPost({
 ...formData,
 spaceType: spaceType.value
})

3）还可以修改标题的展示，体现出空间类别：

<h2>
 {{ route.query?.id ? '修改' : '创建' }}{{ SPACE_TYPE_MAP[spaceType]
</h2>

效果如图：

2、创建团队空间入口

1）给全局侧边栏增加创建团队按钮：

const fixedMenuItems = [
 {
 key: '/',
 label: '公共图库',
 icon: () => h(PictureOutlined),
 },
 {
 key: '/my_space',
 label: '我的空间',
 icon: () => h(UserOutlined),
 },
 {
 key: '/add_space?type=' + SPACE_TYPE_ENUM.TEAM,
 label: '创建团队',
 icon: () => h(TeamOutlined),
 },
]

2）点击菜单事件要改为 router.push(key) ，否则无法携带参数

跳转：

const doMenuClick = ({ key }: { key: string }) => {
 router.push(key)
}

3）在全局侧边栏中加载 “我的团队空间列表”，每个团队空间

作为一个菜单项展示。最终展示的菜单项 = 固定菜单 + 团队

空间菜单，代码如下：

const teamSpaceList = ref<API.SpaceUserVO[]>([])
const menuItems = computed(() => {

 

 if (teamSpaceList.value.length < 1) {
 return fixedMenuItems;
 }

 const teamSpaceSubMenus = teamSpaceList.value.map((spaceUser) => {
 const space = spaceUser.space
 return {
 key: '/space/' + spaceUser.spaceId,
 label: space?.spaceName,
 }
 })
 const teamSpaceMenuGroup = {
 type: 'group',
 label: '我的团队',
 key: 'teamSpace',
 children: teamSpaceSubMenus,
 }
 return [...fixedMenuItems, teamSpaceMenuGroup]
})

const fetchTeamSpaceList = async () => {
 const res = await listMyTeamSpaceUsingPost()
 if (res.data.code === 0 && res.data.data) {
 teamSpaceList.value = res.data.data
 } else {
 message.error('加载我的团队空间失败，' + res.data.message)
 }
}

watchEffect(() => {

 if (loginUserStore.loginUser.id) {
 fetchTeamSpaceList()
 }
})

效果如图：

空间成员管理

 

1、成员管理页面入口

空间详情页的空间分析按钮左边增加成员管理按钮，点击后

跳转到成员管理页面：

<a-button
 type="primary"
 ghost
 :icon="h(TeamOutlined)"
 :href="`/spaceUserManage/${id}`"
 target="_blank"
>
 成员管理
</a-button>

该页面还有一些细节可以优化，比如修改标题展示，区分空

间类别：

<h2>{{ space.spaceName }}（{{ SPACE_TYPE_MAP[space.spaceType] }}）</h2

切换空间时，应该重新获取空间信息和图片列表。可以使用

watch 来监听空间 id 变量实现：

watch(
 () => props.id,
 (newSpaceId) => {
 fetchSpaceDetail()
 fetchData()
 },
)

效果如图：

2、空间成员管理页面

参考语雀的空间成员管理，页面结构为添加成员表单 + 成员

信息表格：

1）复制空间管理页面，新建路由，该页面接受空间 id 作为动

态参数，展示某个空间下的成员列表：

{
 path: '/spaceUserManage/:id',
 name: '空间成员管理',
 component: SpaceUserManagePage,
 props: true,
},

该页面绝大多数代码都可以复用空间管理页面，只需要遵循

流程修改即可。

2）定义表格列：

const columns = [
 {
 title: '用户',
 dataIndex: 'userInfo',
 },
 {
 title: '角色',
 dataIndex: 'spaceRole',
 },
 {
 title: '创建时间',
 dataIndex: 'createTime',
 },
 {
 title: '操作',
 key: 'action',
 },

]

3）调用接口以获取表格数据，此处不需要分页，直接展示所

有成员：

interface Props {
 id: string
}

const props = defineProps<Props>()

const dataList = ref([])

const fetchData = async () => {
 const spaceId = props.id
 if (!spaceId) {
 return
 }
 const res = await listSpaceUserUsingPost({
 spaceId,
 })
 if (res.data.data) {
 dataList.value = res.data.data ?? []
 } else {
 message.error('获取数据失败，' + res.data.message)
 }
}

onMounted(() => {
 fetchData()
})

4）自定义表格列，展示用户信息、空间角色、创建时间和操

作按钮。由于可修改的成员信息只有 “角色”，所以可以直接

将空间角色渲染为下拉框选择器组件，便于管理员操作。

<a-table :columns="columns" :data-source="dataList">
 <template #bodyCell="{ column, record }">
 <template v-if="column.dataIndex === 'userInfo'">
 <a-space>
 <a-avatar :src="record.user?.userAvatar" />
 {{ record.user?.userName }}
 </a-space>
 </template>
 <template v-if="column.dataIndex === 'spaceRole'">
 <a-select
 v-model:value="record.spaceRole"
 :options="SPACE_ROLE_OPTIONS"
 @change="(value) => editSpaceRole(value, record)"
 />
 </template>

 

 <template v-else-if="column.dataIndex === 'createTime'">
 {{ dayjs(record.createTime).format('YYYY-MM-DD HH:mm:ss') }}
 </template>
 <template v-else-if="column.key === 'action'">
 <a-space wrap>
 <a-button type="link" danger @click="doDelete(record.id)">删除
 </a-space>
 </template>
 </template>
</a-table>

编辑空间角色的函数：

const editSpaceRole = async (value, record) => {
 const res = await editSpaceUserUsingPost({
 id: record.id,
 spaceRole: value,
 })
 if (res.data.code === 0) {
 message.success('修改成功')
 } else {
 message.error('修改失败，' + res.data.message)
 }
}

删除成员的函数：

const doDelete = async (id: string) => {
 if (!id) {
 return
 }
 const res = await deleteSpaceUserUsingPost({ id })
 if (res.data.code === 0) {
 message.success('删除成功')

 fetchData()
 } else {
 message.error('删除失败')
 }
}

5）在表格上方编写添加成员表单，默认角色是 “浏览者”

<a-form layout="inline" :model="formData" @finish="handleSubmit">
 <a-form-item label="用户 id" name="userId">
 <a-input v-model:value="formData.userId" placeholder="请输入用户 i
 </a-form-item>
 <a-form-item>
 <a-button type="primary" html-type="submit">添加用户</a-button>
 </a-form-item>

 

</a-form>

编写表单项变量和提交函数：

const formData = reactive<API.SpaceUserAddRequest>({})

const handleSubmit = async () => {
 const spaceId = props.id
 if (!spaceId) {
 return
 }
 const res = await addSpaceUserUsingPost({
 spaceId,
 ...formData,
 })
 if (res.data.code === 0) {
 message.success('添加成功')

 fetchData()
 } else {
 message.error('添加失败，' + res.data.message)
 }
}

页面效果如图：

成员权限控制

1、需求梳理

需求：用户没有某个操作权限时，不应该看到对应的操作按

钮。

首先梳理一下页面和需要控制权限的按钮，以及对应的权

限：

 

1）空间详情页

图片编辑按钮：需要 picture:edit 权限

图片删除按钮：需要 picture:delete 权限

成员管理按钮：需要 spaceUser:manage 权限

空间分析按钮：需要 spaceUser:manage 权限

上传图片按钮：需要 picture:upload 权限

2）图片详情页

图片编辑按钮：需要 picture:edit 权限

图片删除按钮：需要 picture:delete 权限

2、权限控制

1）空间详情页新增权限变量。由于每个权限检查的逻辑都是

一致的（判断权限列表中是否包含需要的权限），可以编写

一个通用的权限检查函数。

function createPermissionChecker(permission: string) {
 return computed(() => {
 return (space.value.permissionList ?? []).includes(permission)
 })
}

const canManageSpaceUser = createPermissionChecker(SPACE_PERMISSION_E
const canUploadPicture = createPermissionChecker(SPACE_PERMISSION_ENU
const canEditPicture = createPermissionChecker(SPACE_PERMISSION_ENUM.
const canDeletePicture = createPermissionChecker(SPACE_PERMISSION_ENU

💡 其实也可以让后端计算好 canXXX ，然后返回给前端直接

用，不过差别不大。

2）给对应的操作按钮增加 v-if ，比如创建图片按钮：

<a-button
 v-if="canUploadPicture"
 type="primary"
 :href="`/add_picture?spaceId=${id}`"
 target="_blank"

 

>
 + 创建图片
</a-button>

3）图片列表组件支持控制编辑和删除按钮的隐藏，由父组件

传递属性：

interface Props {
 dataList?: API.PictureVO[]
 loading?: boolean
 showOp?: boolean
 onReload?: () => void
 canEdit?: boolean
 canDelete?: boolean
}

const props = withDefaults(defineProps<Props>(), {
 dataList: () => [],
 loading: false,
 showOp: false,
 canEdit: false,
 canDelete: false,
})

页面代码：

<edit-outlined v-if="canEdit" @click="(e) => doEdit(picture, e)" />
<delete-outlined v-if="canDelete" @click="(e) => doDelete(picture, e)

空间详情页就可以将权限变量传递给该组件了：

<!-- 图片列表 -->
<PictureList
 :dataList="dataList"
 :loading="loading"
 :onReload="fetchData"
 showOp
 :canEdit="canEditPicture"
 :canDelete="canDeletePicture"
/>

4）图片详情页也按照上述方式进行修改，不再赘述：

function createPermissionChecker(permission: string) {
 return computed(() => {
 return (picture.value.permissionList ?? []).includes(permission)
 })

 

}

const canEdit = createPermissionChecker(SPACE_PERMISSION_ENUM.PICTURE
const canDelete = createPermissionChecker(SPACE_PERMISSION_ENUM.PICTU

3、前端测试

涉及到权限的改动都要认真测试，可以主要测试以下情况：

未登录操作公共图库、私有图库、团队图库

管理员操作公共图库、私有图库、团队图库

普通用户操作公共图库、私有图库、别人的私有图库

协作者操作团队图库，可以看到编辑和删除按钮，但看不

到成员管理按钮

浏览者操作团队图库，仅能查看图片，看不到编辑和删除

按钮

其他开发

1、问题修复 - 兼容多个空间

MySpacePage 获取我的空间时，改为获取 “私有空间” 的第一

个：

const res = await listSpaceVoByPageUsingPost({
 userId: loginUser.id,
 current: 1,
 pageSize: 1,
 spaceType: 0,
})

2、空间管理补充空间类别

补充空间类别列的定义：

{
 title: '空间类别',
 dataIndex: 'spaceType',
},

自定义空间类别列的展示：

<!-- 空间类别 -->
<template v-if="column.dataIndex === 'spaceType'">
 <a-tag>{{ SPACE_TYPE_MAP[record.spaceType] }}</a-tag>
</template>

支持按类别搜索：

<a-form-item label="空间类别" name="spaceType">
 <a-select
 v-model:value="searchParams.spaceType"
 :options="SPACE_TYPE_OPTIONS"
 placeholder="请输入空间类别"

 allow-clear
 />
</a-form-item>

效果如图：

以上就是本节内容，细节非常多，希望大家能够掌握，最好

是自己试着敲一遍。

全文完

本文由 简悦 SimpRead 优化，用以提升阅读体验

使用了 全新的简悦词法分析引擎 ，点击查看详细说明 beta

http://ksria.com/simpread
http://ksria.com/simpread/docs/#/%E8%AF%8D%E6%B3%95%E5%88%86%E6%9E%90%E5%BC%95%E6%93%8E

