
8 - 图片功能扩展 - 智能协同云图
库项目教程 - 编程导航教程

初 始 化 环 境 1 、 [配 置 Maven]

(https://www.codefather.cn/post/1836689783992958977)2、

[安装 Java8](https://www.codefa。

1、 配置 Maven

2、 安装 Java8

3、安装 MySQL8 msi 安装包 链接:

https://pan.baidu.com/s/1O6TrRCpb66A5hdgy0EY9HA 提

取码: g17s

MySQL 安装教程 并且确定 MySQL 启动状态

1、设置阿里云的 Spring Initializr https://start.aliyun.com/

https://www.codefather.cn/post/1836689783992958977
https://www.codefather.cn/post/1828379004995489793
https://pan.baidu.com/s/1O6TrRCpb66A5hdgy0EY9HA
https://zhuanlan.zhihu.com/p/37152572
https://start.aliyun.com/

2、选择 2.7.6 版本

3、修改配置文件 application.properties

修改后缀为 yml 格式，把名字改成 application.yml ，并且添

加以下内容

server:
 port: 8123
 servlet:
 context-path: /api
spring:
 application:
 name: yu-picture-backend

 datasource:
 driver-class-name: com.mysql.cj.jdbc.Driver
 url: jdbc:mysql://localhost:3306/yu_picture
 username: root
 password: 123456

4、尝试启动看看是否报错

MyBatis-plus
官网： https://baomidou.com/

1、在 pom.xml 添加下面的依赖并且删除 MyBatis 的依赖防止

依赖冲突

<dependency>
 <groupId>com.baomidou</groupId>
 <artifactId>mybatis-plus-boot-starter</artifactId>
 <version>3.5.9</version>
</dependency>

https://baomidou.com/

如果有相关 MyBatis 的依赖需要删除

2、添加到 pom.xml 之后，点击右上角的 Load Maven Changes

 

3、在启动文件添加 @MapperScan

@SpringBootApplication
@MapperScan("com.leikooo.yupicturebackend.mapper")
public class YuPictureBackendApplication {

 public static void main(String[] args) {
 SpringApplication.run(YuPictureBackendApplication.class, args
 }

}

然后在 com.leikooo.yupicturebackend 下面创建 mapper 文件夹

Hutool 工具类
官网： https://hutool.cn

1、在 pom.xml 添加下面的依赖

<dependency>
 <groupId>cn.hutool</groupId>
 <artifactId>hutool-all</artifactId>
 <version>5.8.26</version>
</dependency>

2、点击右上角的 Load Maven Changes

Knife4j
官网： https://doc.xiaominfo.com/docs/quick-start#spring-

boot-2

1、在 pom.xml 添加下面的依赖

<dependency>
 <groupId>com.github.xiaoymin</groupId>
 <artifactId>knife4j-openapi2-spring-boot-starter</artifactId>
 <version>4.4.0</version>
</dependency>

https://hutool.cn/
https://doc.xiaominfo.com/docs/quick-start#spring-boot-2
https://doc.xiaominfo.com/docs/quick-start#spring-boot-2

2、新建 controller 包，然后在 demos.web 下面的东西

3、在 application.yml 添加以下依赖

注意下面的 group 是 default

knife4j:
 enable: true
 openapi:
 title: "接口文档"
 version: 1.0
 group:
 default:
 api-rule: package
 api-rule-resources:
 - com.leikooo.yupicturebackend.controller

访问 http://localhost:8123/api/doc.html 可以看到下面的接

口文档

http://localhost:8123/api/doc.html

其他依赖
1、aop 切面

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-aop</artifactId>
</dependency>

2、可以在主类上加上

@EnableAspectJAutoProxy(exposeProxy = true)

加上之后可以在代码之中使用 ，获取当前类的代理对象

AopContext.currentProxy()

具体代码的位置

自定义异常类
exception 包下面

异常枚举类

@Getter
public enum ErrorCode {

 SUCCESS(0, "ok"),
 PARAMS_ERROR(40000, "请求参数错误"),
 NOT_LOGIN_ERROR(40100, "未登录"),
 NO_AUTH_ERROR(40101, "无权限"),
 NOT_FOUND_ERROR(40400, "请求数据不存在"),
 FORBIDDEN_ERROR(40300, "禁止访问"),
 SYSTEM_ERROR(50000, "系统内部异常"),
 OPERATION_ERROR(50001, "操作失败");

 private final int code;

 private final String message;

 ErrorCode(int code, String message) {
 this.code = code;

 

 this.message = message;
 }

}

自定义业务异常

@Getter
public class BusinessException extends RuntimeException {

 private final int code;

 public BusinessException(int code, String message) {
 super(message);
 this.code = code;
 }

 public BusinessException(ErrorCode errorCode) {
 super(errorCode.getMessage());
 this.code = errorCode.getCode();
 }

 public BusinessException(ErrorCode errorCode, String message) {
 super(message);
 this.code = errorCode.getCode();
 }

}

为了方便抛出异常

public class ThrowUtils {

 public static void throwIf(boolean condition, RuntimeException ru
 if (condition) {
 throw runtimeException;
 }
 }

 public static void throwIf(boolean condition, ErrorCode errorCode
 throwIf(condition, new BusinessException(errorCode));
 }

 public static void throwIf(boolean condition, ErrorCode errorCode
 throwIf(condition, new BusinessException(errorCode, message))
 }
}

 

响应包装类
common 包下面

通用返回包装类

@Data
public class BaseResponse<T> implements Serializable {

 private int code;

 private T data;

 private String message;

 public BaseResponse(int code, T data, String message) {
 this.code = code;
 this.data = data;
 this.message = message;
 }

 public BaseResponse(int code, T data) {
 this(code, data, "");
 }

 public BaseResponse(ErrorCode errorCode) {
 this(errorCode.getCode(), null, errorCode.getMessage());
 }
}

为了方便返回信息

public class ResultUtils {

 public static <T> BaseResponse<T> success(T data) {
 return new BaseResponse<>(0, data, "ok");
 }

 public static BaseResponse<?> error(ErrorCode errorCode) {
 return new BaseResponse<>(errorCode);
 }

 public static BaseResponse<?> error(int code, String message) {
 return new BaseResponse<>(code, null, message);
 }

 

 

 public static BaseResponse<?> error(ErrorCode errorCode, String m
 return new BaseResponse<>(errorCode.getCode(), null, message)
 }
}

全局异常处理器
exception 包下面

防止服务器的报错信息返回前端，增加系统风险

@RestControllerAdvice
@Slf4j
public class GlobalExceptionHandler {

 @ExceptionHandler(BusinessException.class)
 public BaseResponse<?> businessExceptionHandler(BusinessException
 log.error("BusinessException", e);
 return ResultUtils.error(e.getCode(), e.getMessage());
 }

 @ExceptionHandler(RuntimeException.class)
 public BaseResponse<?> runtimeExceptionHandler(RuntimeException e
 log.error("RuntimeException", e);
 return ResultUtils.error(ErrorCode.SYSTEM_ERROR, "系统错误");
 }
}

请求包装类
像是 分页 、删除 之类的都有很多重复的字段，其他请求直接

继承这两个类即可减少代码书写

分页请求包装类

@Data
public class PageRequest {

 private int current = 1;

 private int pageSize = 10;

 

 private String sortField;

 private String sortOrder = "descend";
}

请求删除包装类

@Data
public class DeleteRequest implements Serializable {

 private Long id;

 private static final long serialVersionUID = 1L;
}

全局跨域配置
在 config 包下面

@Configuration
public class CorsConfig implements WebMvcConfigurer {

 @Override
 public void addCorsMappings(CorsRegistry registry) {

 registry.addMapping("/**")

 .allowCredentials(true)

 .allowedOriginPatterns("*")
 .allowedMethods("GET", "POST", "PUT", "DELETE", "OPTI
 .allowedHeaders("*")
 .exposedHeaders("*");
 }
}

编写示例代码
移除 controller 包下面的其他代码

@RestController
@RequestMapping("/")
public class MainController {

 @GetMapping("/health")
 public BaseResponse<String> health() {
 return ResultUtils.success("ok");
 }
}

测试，只要看到下面的结果就初始化成功！q(≧▽≦q)

如果遇到编译器无端爆红但是不影响运行，清除一下缓存即

可。

清除缓存 File | Invalidate Caches 全部勾上清楚一下

或者直接 Reload All from Disk 即可解决

全文完

本文由 简悦 SimpRead 优化，用以提升阅读体验

使用了 全新的简悦词法分析引擎 ，点击查看详细说明 beta

http://ksria.com/simpread
http://ksria.com/simpread/docs/#/%E8%AF%8D%E6%B3%95%E5%88%86%E6%9E%90%E5%BC%95%E6%93%8E

