
9 - AI 图片编辑 - 智能协同云图库
项目教程 - 编程导航教程

本节重点为进一步提升用户使用私有空间的体

验，我们本节将重点扩展图片编辑功能，包括：

基础图片编辑 AI 图片编辑通过这些功能扩展，

用户可以在平台上轻松完成从基础编辑到高级处

理的多样化操作，而不需要使用其他。

本节重点
为进一步提升用户使用私有空间的体验，我们本节将重点扩

展图片编辑功能，包括：

基础图片编辑

AI 图片编辑

通过这些功能扩展，用户可以在平台上轻松完成从基础编辑

到高级处理的多样化操作，而不需要使用其他 PS 软件。

一、基础图片编辑

需求分析

在日常的图片管理中，用户经常需要对图片进行简单处理，

比如裁剪多余部分、旋转图片、放大缩小尺寸等。

因此，我们首先要引入基础图片编辑功能，帮助用户快速完

成以下操作：

裁剪：支持按固定比例或自由裁剪

旋转：提供顺时针、逆时针旋转功能

这个功能非常适合上传证件照之类的场景。

注意，该功能不需要限制仅在空间内才能使用，公共图库也

可以支持。

方案设计

图片编辑功能的实现以前端为主，编辑完成后通过调用现有

的图片上传接口，将编辑后的图片保存至平台。

具体业务流程：

1. 在图片上传页面，如果用户已上传图片，页面会展示 “编辑

图片” 按钮。

2. 用户点击 “编辑图片” 后，将打开图片编辑的弹窗组件，支

持裁剪、旋转等操作。

3. 用户确认编辑后，会调用图片上传接口，将编辑后的新图

片保存至平台，同时更新图片信息。

其实还有另一种设计，在用户每次选择本地或 URL 图片时，

先不调用后端的图片上传接口，而是自动弹出图片编辑弹窗

组件，编辑完后再保存。但这样做就不是 “扩展功能” 而是

“修改已有功能”，涉及到的代码改动会更多，感兴趣的同学可

以尝试实现。

💡 这个地方也能体现出方案设计的重要性，可以通过合适地

改变业务流程，降低开发成本，并让项目更利于维护扩展。

前端开发

1、图片编辑组件

图片编辑是个比较常见的功能，一般会有现成的库可以直接

用。经过调研，选用开源的 vue-cropper 组件 。

1）引入组件

参考官方文档引入，注意要引入 Vue3 版本的：

https://github.com/xyxiao001/vue-cropper?tab=readme-ov-file#2-%E5%BC%95%E5%85%A5-vue-cropper

 

安装依赖：

npm install vue-cropper@next

鱼皮编写本教程时，使用的 vue-cropper 版本是 1.1.4，最好

跟教程保持一致。

在 main.ts 中引入依赖：

import VueCropper from 'vue-cropper';
import 'vue-cropper/dist/index.css'

app.use(VueCropper)

2）新建图片编辑组件 ImageCropper。我们要开发的组件结

构包括两部分：上方为图片预览区，下方为操作栏。

在哪里使用图片编辑组件呢？

根据我们的方案设计，图片编辑不应该和任何一种上传图片

的方式（本地图片 / URL 上传）进行绑定，是在上传完成后

才能编辑，所以应该在图片上传页面引入。

先硬编码要编辑的图片 url：

<ImageCropper imageUrl="https://avatars2.githubusercontent.com/u/1568

可以参考 官方 Demo 实现组件，依次完成放大、缩小、左

旋、右旋操作：

<template>
 <div>
 <vue-cropper
 ref="cropperRef"
 :img="imageUrl"
 :autoCrop="true"
 :fixedBox="false"
 :centerBox="true"
 :canMoveBox="true"
 :info="true"
 outputType="png"
 />
 <div />
 <!-- 图片操作 -->
 <div>
 <a-space>
 <a-button @click="rotateLeft">向左旋转</a-button>
 <a-button @click="rotateRight">向右旋转</a-button>
 <a-button @click="changeScale(1)">放大</a-button>
 <a-button @click="changeScale(-1)">缩小</a-button>
 </a-space>
 </div>
 </div>
</template>

<script setup lang="ts">
import { ref } from 'vue'

interface Props {
 imageUrl?: string
}

const props = defineProps<Props>()

// 编辑器组件的引用
const cropperRef = ref()

// 向左旋转
const rotateLeft = () => {
 cropperRef.value.rotateLeft()
}

// 向右旋转
const rotateRight = () => {
 cropperRef.value.rotateRight()
}

// 缩放
const changeScale = (num: number) => {
 cropperRef.value.changeScale(num)
}
</script>

<style scoped>
.image-cropper {
 text-align: center;
}

https://codepen.io/xyxiao001/pen/yLooYKg

 

.image-cropper .vue-cropper {
 height: 400px;
}
</style>

3）编写 “确认按钮”：

<a-space>
 <a-button @click="rotateLeft">向左旋转</a-button>
 <a-button @click="rotateRight">向右旋转</a-button>
 <a-button @click="changeScale(1)">放大</a-button>
 <a-button @click="changeScale(-1)">缩小</a-button>
 <a-button type="primary" :loading="loading" @click="handleConfirm">
</a-space>

点击后，调用 cropper 的 getCropBlob 函数，可以获得裁切

后的文件：

const handleConfirm = () => {
 cropperRef.value.getCropBlob((blob: Blob) => {

 })
}

效果如图：

💡 如果想要点击确认后下载图片，可以参考 demo 的代码实

现：

 

2、图片编辑弹窗

将上一步开发的图片编辑组件套到 Ant Design 的弹框组件

内。

1）把最外层从 div 改为 a-modal ，注意一定要将 class 类名

加在 modal 上，否则样式无法正确添加：

<a-modal v-model:visible="visible" title="编辑图片" :footer="false" @c
 ... 原有代码
</a-modal>

2）参考图片分享弹窗组件，补充控制弹窗显示隐藏的相关代

码，并对外暴露打开弹窗的 openModal 函数：

const visible = ref(false)

const openModal = () => {
 visible.value = true
}

const closeModal = () => {
 visible.value = false
}

defineExpose({
 openModal,

https://antdv.com/components/modal-cn

})

3、上传编辑后的图片

点击确认后，需要上传编辑后的图片。我们可以把图片编辑

组件当做是图片上传组件的一种，而不和任何一种上传图片

的方式（本地图片 / URL 上传）进行绑定。

1）参考图片上传组件的属性，给组件补充 picture 和

spaceId、onSuccess 属性：

interface Props {
 imageUrl?: string
 picture?: API.PictureVO
 spaceId?: number
 onSuccess?: (newPicture: API.PictureVO) => void
}

2）编写上传函数。点击确认后将 blob 数据转换为 file 对

象，然后就可以复用图片上传组件的提交函数了，上传成功

后会传递新图片信息给父组件、并关闭弹窗。代码如下：

const loading = ref<boolean>(false)

const handleConfirm = () => {
 cropperRef.value.getCropBlob((blob: Blob) => {
 const fileName = (props.picture?.name || 'image') + '.png'
 const file = new File([blob], fileName, { type: blob.type })

 handleUpload({ file })
 })
}

const handleUpload = async ({ file }: any) => {
 loading.value = true
 try {
 const params: API.PictureUploadRequest = props.picture ? { id: pr
 params.spaceId = props.spaceId
 const res = await uploadPictureUsingPost(params, {}, file)
 if (res.data.code === 0 && res.data.data) {
 message.success('图片上传成功')

 props.onSuccess?.(res.data.data)
 closeModal();
 } else {
 message.error('图片上传失败，' + res.data.message)
 }
 } catch (error) {
 message.error('图片上传失败')
 } finally {

 

 

 loading.value = false
 }
}

4、使用图片编辑弹窗组件

在创建图片页面使用组件，可以在图片下方补充一个编辑按

钮，点击编辑按钮后打开弹窗：

<div v-if="picture">
 <a-button :icon="h(EditOutlined)" @click="doEditPicture">编辑图片</a
 <ImageCropper
 ref="imageCropperRef"
 imageUrl="https://avatars2.githubusercontent.com/u/15681693?s=460
 :picture="picture"
 :spaceId="spaceId"
 :onSuccess="onCropSuccess"
 />
</div>

编辑图片事件函数：

const imageCropperRef = ref()

const doEditPicture = () => {
 if (imageCropperRef.value) {
 imageCropperRef.value.openModal()
 }
}

const onCropSuccess = (newPicture: API.PictureVO) => {
 picture.value = newPicture
}

适当优化一下 CSS 样式，增加上下边距和居中：

#addPicturePage .edit-bar {
 text-align: center;
 margin: 16px 0;
}

效果如图：

开发完成后，把 imageUrl 的值改为要编辑的图片地址：

<ImageCropper
 ref="imageCropperRef"
 :imageUrl="picture?.url"
 :picture="picture"
 :spaceId="spaceId"
 :onSuccess="onSuccess"
/>

结果，发现图片无法正常显示，会出现跨域问题！

5、图片跨域问题解决

跨域问题之前我们已经经历过了，是因为前端域名和服务器

（对象存储）的域名不一样导致的。

解决跨域问题的方式有很多，因为我们的图片地址全部都是

同一个对象存储 URL，所以可以直接登录云平台来修改对象

存储的跨域访问 CORS 设置，直接给特定的源站（域名 + 端

口）开放跨域。如图：

然后再次测试编辑图片功能，图片就正常加载了：

扩展知识 - 通过代理解决跨域

可以通过 Vite 自带的本地代理服务器，先替换图片的访问地

址为前端地址，然后通过代理服务器转发到对象存储路径，

实现访问。

获取图片的参考代码：

export const fetchImageAsBlob = async (
 url?: string,
 cb?: (blobUrl: string, base64: string) => void,
) => {
 if (!url) return
 const formatUrl = url.replace('https://pic.code-nav.cn', window.loc

 

 try {
 const response = await fetch(formatUrl)
 if (!response.ok) {
 throw new Error('图片加载失败')
 }
 const imageBlob = await response.blob()
 const objectUrl = URL.createObjectURL(imageBlob)

 const reader = new FileReader()
 reader.readAsDataURL(imageBlob)
 reader.onloadend = () => {
 const base64 = reader.result as string
 cb?.(objectUrl, base64)
 }
 } catch (error: any) {
 console.log(error)
 }
}

参考 vite 配置：

server: {
 host: 'localhost',

 proxy: {

 '/yu_picture': {

 target: 'https://codefather.cn',
 changeOrigin: true,
 }
 },
},

扩展

1）优化业务流程：在图片上传前，先触发编辑弹窗，完成图

片裁剪后再上传到后端。这样需要将编辑图片整合到图片上

传组件内部，而不是平级的关系。

2）支持调整裁剪区域的固定比例（比如 16:9），实现思路是

利用 vue-cropper 组件的 fixedNumber 属性，参考代码：

<!-- 比例选择 -->
<div>
 <a-radio-group v-model:value="aspectRatio" button-style="solid">
 <a-radio-button value="free">自由比例</a-radio-button>
 <a-radio-button value="1:1">1:1</a-radio-button>
 <a-radio-button value="4:3">4:3</a-radio-button>
 <a-radio-button value="16:9">16:9</a-radio-button>

 <a-radio-button value="3:4">3:4</a-radio-button>
 <a-radio-button value="9:16">9:16</a-radio-button>
 </a-radio-group>
</div>

<vue-cropper
 ref="cropperRef"
 :img="imageUrl"
 :autoCrop="true"
 :fixedBox="false"
 :centerBox="true"
 :canMoveBox="true"
 :info="true"
 outputType="png"
 :fixed="aspectRatio !== 'free'"
 :fixedNumber="currentAspectRatio"
/>

const aspectRatio = ref('free')

// 计算当前宽高比
const currentAspectRatio = computed(() => {
 if (aspectRatio.value === 'free') return [0, 0]
 const [width, height] = aspectRatio.value.split(':').map(Number)
 return [width, height]
})

3）支持图片的任意角度旋转操作

4）支持对图片尺寸进行等比例放大的操作

二、AI 图片编辑

需求分析

随着 AI 的高速发展，AI 几乎可以应用到任何传统业务中，增

强应用的功能，带给用户更好的体验。

对于图库网站来说，AI 也有非常多的应用空间，比如可以利

用 AI 绘图大模型来编辑图片，实现扩图、擦除补全、图配

文、去水印等功能。

以 AI 扩图功能为例，让我们来学习如何在项目中快速接入 AI

绘图大模型。用户可以选择一张已上传的图片，通过 AI 编辑

得到新的图片，并根据情况自行选择是否保存。

注意，该功能不用限制仅在空间内才能使用，公共图库也可

以支持。

方案设计

1、AI 绘图大模型选择

AI 绘图大模型我们自己是搞不来的，可以选择一个市面上支

持 AI 绘图的大模型。

选择 AI 大模型时，我们最关注的应该是生成效果、生成速度

还有价格了吧？当然，对我们学习来说，最关注的还是价

格，毕竟绘画大模型的费用不低。

国外比较知名的就是 Midjourney，鱼皮以前用的就是这个，

不过不仅开发对接麻烦，价格也比较贵。国内的 AI 绘图大模

型比较推荐 阿里云百炼 ，它是一站式的大模型开发及应用

构建平台，可以通过简单的界面操作，在 5 分钟内开发出一

款大模型应用，并在线体验效果。

https://click.aliyun.com/m/1000400273/

创建好应用后，利用官方提供的 API 或 SDK，直接通过几行

代码，就能在项目中使用大模型应用：

通过阅读 官方文档 ，发现它是支持 AI 图像编辑与生成功能

的，包括 AI 扩图，支持 HTTP 调用，符合我们的需求。

在 控制台 也能看到对应的图像画面扩展模型：

https://click.aliyun.com/m/1000400274/
https://click.aliyun.com/m/1000400275/

百炼的大模型提供了 新人免费额度 ，可以通过文档或者点进

大模型了解，对于学习用来说足够了：

经过鱼皮的测试，图片生成效果、生成速度都是不错的，因

此，本项目将选用阿里云百炼实现 AI 扩图功能。

https://click.aliyun.com/m/1000400407/

💡 建议之前没接触过类似 AI 大模型平台的同学，先多利用

网页控制台熟悉 AI 大模型的 Prompt、了解不同大模型的区

别。推荐一个 AI 学习网站

2、调用方式

通过阅读 AI 图像扩展的官方文档 ，我们发现，API 只支持异

步方式调用。

这是因为 AI 绘画任务计算量大且耗时长，同步调用会导致服

务器线程长时间被单个任务占用，限制了并发处理能力，增

加了超时和系统崩溃的风险。通过异步调用，服务器可以将

任务放入队列中，合理调度资源，避免阻塞主线程，从而更

高效地服务多个用户请求，提升整体系统的稳定性和可扩展

性。

同步调用流程如下，好处是客户端可以直接获取到结果，调

用更方便：

https://www.waytoagi.com/
https://click.aliyun.com/m/1000400274/

异步调用流程如下，客户端需要在提交任务后，不断轮询请

求，来检查任务是否执行完成：

由于 AI 接口已经选择了异步调用，所以我们作为要调用 AI

接口的客户端，要使用轮询的方式来检查任务状态是否为 “已

完成”，如果完成了，才可以获取到生成的图片。

那么是前端轮询还是后端轮询呢？

1）前端轮询

前端调用后端提交任务后得到任务 ID，然后通过定时器轮询

请求查询任务状态接口，直到任务完成或失败。示例代码：

async function submitTask() {
 const response = await fetch('/api/createTask', { method: 'POST' })
 const { taskId } = await response.json();
 checkTaskStatus(taskId);
}

submitTask();

async function checkTaskStatus(taskId) {
 const intervalId = setInterval(async () => {
 const response = await fetch(`/api/taskStatus?taskId=${taskId}`);
 const { status, result } = await response.json();

 if (status === 'success') {

 

 

 console.log('Task completed:', result);
 clearInterval(intervalId);
 } else if (status === 'failed') {
 console.error('Task failed');
 clearInterval(intervalId);
 }
 }, 2000);
}

2）后端轮询

后端通过循环或定时任务检测任务状态，接口保持阻塞，直

到任务完成或失败，直接返回结果给前端。示例代码：

@RestController
public class TaskController {

 @PostMapping("/createTask")
 public String createTask() {
 String taskId = taskService.submitTask();
 return taskId;
 }

 @GetMapping("/waitForTask")
 public ResponseEntity<String> waitForTask(@RequestParam String ta
 while (true) {
 String status = taskService.checkTaskStatus(taskId);

 if ("success".equals(status)) {
 return ResponseEntity.ok("Task completed");
 } else if ("failed".equals(status)) {
 return ResponseEntity.status(HttpStatus.INTERNAL_SERV
 }

 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 return ResponseEntity.status(HttpStatus.INTERNAL_SERV
 }
 }
 }
}

显然，后端轮询容易因为任务阻塞导致资源耗尽，所以通常

推荐 前端轮询。除非有明确的需求要求时，才考虑后端轮

询，比如任务结果需实时返回且对网络请求数敏感。（或者

学习时不想写前端的同学哈哈）

此处我们也选择前端轮询方案实现。

💡 从这个方案设计中，我们也能感受到，如果你同时了解前

端和后端，可以结合二者设计出更合理的方案，而不是把所

有的 “重担” 都交给前端或者后端一方。所以企业中开需求评

审会或者讨论方案时，前后端需要紧密协作。

下面进入开发。

后端开发

1、AI 扩图 API

首先开发业务依赖的基础能力，也就是 AI 扩图 API。

1）需要先进入 阿里云百炼控制台 开通服务：

开通推理能力：

https://click.aliyun.com/m/1000400275/

2）开通之后，我们要在控制台获取 API Key，可 参考文

档 ：

能够在控制台查看到 API Key，注意，API Key 一定不要对外

泄露！

通过阅读文档发现，百炼支持通过 SDK 或 HTTP 调用。虽然

官方写的支持 Java SDK，但 AI 扩图功能中对 SDK 的介绍非

常少，此处考虑到兼容性，我们还是 使用 HTTP 调用。

由于使用异步的方式，需要开发创建任务和查询结果 2 个

API：

https://click.aliyun.com/m/1000400408/
https://click.aliyun.com/m/1000400408/

3）在配置文件中填写获取到的 apiKey：

aliYunAi:
 apiKey: xxxx

4）新建数据模型类

在 api 包下新建 aliyunai 包，存放阿里云 AI 相关代码。

在 aliyunai.model 包下新建数据模型类，可以让 AI 根据官方

文档中的请求响应信息自动生成，无需自己手动编写。

由于每个 AI 图片处理操作的请求响应都有一些区别，所以单

独给 AI 扩图功能编写具体的请求响应类。

创建扩图任务请求类：

@Data
public class CreateOutPaintingTaskRequest implements Serializable {

 private String model = "image-out-painting";

 private Input input;

 private Parameters parameters;

 @Data
 public static class Input {

 @Alias("image_url")
 private String imageUrl;
 }

 @Data
 public static class Parameters implements Serializable {

 private Integer angle;

 @Alias("output_ratio")
 private String outputRatio;

 @Alias("x_scale")
 @JsonProperty("xScale")
 private Float xScale;

 @Alias("y_scale")
 @JsonProperty("yScale")

 private Float yScale;

 @Alias("top_offset")
 private Integer topOffset;

 @Alias("bottom_offset")
 private Integer bottomOffset;

 @Alias("left_offset")
 private Integer leftOffset;

 @Alias("right_offset")
 private Integer rightOffset;

 @Alias("best_quality")
 private Boolean bestQuality;

 @Alias("limit_image_size")
 private Boolean limitImageSize;

 @Alias("add_watermark")
 private Boolean addWatermark = false;
 }
}

注意，上述代码中，某些字段打上了 Hutool 工具类的

@Alias 注解，这个注解仅对 Hutool 的 JSON 转换生效，对

SpringMVC 的 JSON 转换没有任何影响。

💡 这里有一个巨坑的地方！经过测试发现，前端如果传递参

数名 xScale，是无法赋值给 xScale 字段的；但是传递参数名

xscale，就可以赋值。这是因为 SpringMVC 对于第二个字母

是大写的参数无法映射（和参数类别无关）， 参考博客 。

解决方案是，给这些字段增加 @JsonProperty 注解：

@Alias("x_scale")
@JsonProperty("xScale")
private Float xScale;

@Alias("y_scale")
@JsonProperty("yScale")
private Float yScale;

https://blog.csdn.net/JokerHH/article/details/88729590

为什么 SpringMVC 要这样设计呢？鱼皮通过查阅了解到，这

是因为 Jackson 在处理字段名与 JSON 属性名映射时，会依

赖 Java 的 标准命名规范 和 反射 API。

举个例子，根据 JavaBean 的规范，属性名称与其访问器方法

（getter 和 setter）之间的映射规则是：如果属性名以小写字

母开头，第二个字母是大写（如 eMail ），规范仍认为属性

名称是 eMail ，而访问器方法应为 geteMail() 和

seteMail() 。但 Jackson 会尝试推断属性名为 email （因为

eMail 不常见），从而导致 JSON 中 eMail 或 email 可能

无法正确映射。

创建扩图任务响应类：

@Data
@NoArgsConstructor
@AllArgsConstructor
public class CreateOutPaintingTaskResponse {

 private Output output;

 @Data
 public static class Output {

 private String taskId;

 private String taskStatus;
 }

 private String code;

 private String message;

 private String requestId;

}

查询任务响应类：

@Data
@NoArgsConstructor
@AllArgsConstructor
public class GetOutPaintingTaskResponse {

 private String requestId;

 private Output output;

 @Data
 public static class Output {

 private String taskId;

 private String taskStatus;

 private String submitTime;

 private String scheduledTime;

 private String endTime;

 private String outputImageUrl;

 private String code;

 private String message;

 private TaskMetrics taskMetrics;
 }

 @Data
 public static class TaskMetrics {

 private Integer total;

 private Integer succeeded;

 private Integer failed;
 }
}

5）开发 API 调用类，通过 Hutool 的 HTTP 请求工具类来调

用阿里云百炼的 API：

@Slf4j
@Component
public class AliYunAiApi {

 

 @Value("${aliYunAi.apiKey}")
 private String apiKey;

 public static final String CREATE_OUT_PAINTING_TASK_URL = "https:

 public static final String GET_OUT_PAINTING_TASK_URL = "https://d

 public CreateOutPaintingTaskResponse createOutPaintingTask(Create
 if (createOutPaintingTaskRequest == null) {
 throw new BusinessException(ErrorCode.OPERATION_ERROR, "扩
 }

 HttpRequest httpRequest = HttpRequest.post(CREATE_OUT_PAINTIN
 .header(Header.AUTHORIZATION, "Bearer " + apiKey)

 .header("X-DashScope-Async", "enable")
 .header(Header.CONTENT_TYPE, ContentType.JSON.getValu
 .body(JSONUtil.toJsonStr(createOutPaintingTaskRequest
 try (HttpResponse httpResponse = httpRequest.execute()) {
 if (!httpResponse.isOk()) {
 log.error("请求异常：{}", httpResponse.body());
 throw new BusinessException(ErrorCode.OPERATION_ERROR
 }
 CreateOutPaintingTaskResponse response = JSONUtil.toBean(
 String errorCode = response.getCode();
 if (StrUtil.isNotBlank(errorCode)) {
 String errorMessage = response.getMessage();
 log.error("AI 扩图失败，errorCode:{}, errorMessage:{}"
 throw new BusinessException(ErrorCode.OPERATION_ERROR
 }
 return response;
 }
 }

 public GetOutPaintingTaskResponse getOutPaintingTask(String taskI
 if (StrUtil.isBlank(taskId)) {
 throw new BusinessException(ErrorCode.OPERATION_ERROR, "任
 }
 try (HttpResponse httpResponse = HttpRequest.get(String.forma
 .header(Header.AUTHORIZATION, "Bearer " + apiKey)
 .execute()) {
 if (!httpResponse.isOk()) {
 throw new BusinessException(ErrorCode.OPERATION_ERROR
 }
 return JSONUtil.toBean(httpResponse.body(), GetOutPaintin
 }
 }
}

注意，要按照官方文档的要求给请求头增加鉴权信息，拼接

配置中写好的 apiKey：

 

 

2、扩图服务

在 model.dto.picture 包下新建 AI 扩图请求类，用于接受前端

传来的参数并传递给 Service 服务层。字段包括图片 id 和扩

图参数：

@Data
public class CreatePictureOutPaintingTaskRequest implements Serializa

 private Long pictureId;

 private CreateOutPaintingTaskRequest.Parameters parameters;

 private static final long serialVersionUID = 1L;
}

在图片服务中编写创建扩图任务方法，从数据库中获取图片

信息和 url 地址，构造请求参数后调用 api 创建扩图任务。注

意，如果图片有空间 id，则需要校验权限，直接复用以前的

权限校验方法。

@Override
public CreateOutPaintingTaskResponse createPictureOutPaintingTask(Cre

 Long pictureId = createPictureOutPaintingTaskRequest.getPictureId
 Picture picture = Optional.ofNullable(this.getById(pictureId))
 .orElseThrow(() -> new BusinessException(ErrorCode.NOT_FO

 checkPictureAuth(loginUser, picture);

 CreateOutPaintingTaskRequest taskRequest = new CreateOutPaintingT
 CreateOutPaintingTaskRequest.Input input = new CreateOutPaintingT
 input.setImageUrl(picture.getUrl());
 taskRequest.setInput(input);
 BeanUtil.copyProperties(createPictureOutPaintingTaskRequest, task

 return aliYunAiApi.createOutPaintingTask(taskRequest);
}

3、扩图接口

 

在 PictureController 添加 AI 扩图接口，包括创建任务和查询

任务状态接口：

@PostMapping("/out_painting/create_task")
public BaseResponse<CreateOutPaintingTaskResponse> createPictureOutPa
 @RequestBody CreatePictureOutPaintingTaskRequest createPictur
 HttpServletRequest request) {
 if (createPictureOutPaintingTaskRequest == null || createPictureO
 throw new BusinessException(ErrorCode.PARAMS_ERROR);
 }
 User loginUser = userService.getLoginUser(request);
 CreateOutPaintingTaskResponse response = pictureService.createPic
 return ResultUtils.success(response);
}

@GetMapping("/out_painting/get_task")
public BaseResponse<GetOutPaintingTaskResponse> getPictureOutPainting
 ThrowUtils.throwIf(StrUtil.isBlank(taskId), ErrorCode.PARAMS_ERRO
 GetOutPaintingTaskResponse task = aliYunAiApi.getOutPaintingTask(
 return ResultUtils.success(task);
}

前端开发

可以参考基础编辑图片的交互流程，在编辑图片按钮旁边添

加 AI 扩图按钮，点击之后显示弹窗进行 AI 扩图操作。

这样可以将 AI 操作的逻辑封装到单独的组件中，让创建图片

页面的代码更精简。

1、AI 扩图弹窗

1）先复制之前开发好的裁剪图片弹窗，保留控制弹窗显示隐

藏的逻辑，修改弹窗的标题：

<template>
 <a-modal

 v-model:visible="visible"
 title="AI 扩图"
 :footer="false"
 @cancel="closeModal"
 >

 </a-modal>
</template>

<script setup lang="ts">
import { ref } from 'vue'
import { uploadPictureUsingPost } from '@/api/pictureController'

import { message } from 'ant-design-vue'

interface Props {
 picture?: API.PictureVO
 spaceId?: number
 onSuccess?: (newPicture: API.PictureVO) => void
}

const props = defineProps<Props>()

// 是否可见
const visible = ref(false)

// 打开弹窗
const openModal = () => {
 visible.value = true
}

// 关闭弹窗
const closeModal = () => {
 visible.value = false
}

// 暴露函数给父组件
defineExpose({
 openModal,
})
</script>

<style scoped>
.image-out-painting {
 text-align: center;
}
</style>

由于 AI 扩图一定是对已有图片进行编辑，所以弹窗的属性可

以不需要 spaceId。

2）开发弹窗的内容，采用一行两列栅格布局，左边显示原始

图片、右边显示扩图结果，下方展示扩图操作按钮。

<a-row gutter="16">
 <a-col span="12">
 <h4>原始图片</h4>

 </a-col>
 <a-col span="12">
 <h4>扩图结果</h4>
 <img
 v-if="resultImageUrl"
 :src="resultImageUrl"
 :alt="picture?.name"

 />
 </a-col>
</a-row>
<div />

 

<a-flex gap="16" justify="center">
 <a-button type="primary" ghost @click="createTask">生成图片</a-butto
 <a-button type="primary" @click="handleUpload">应用结果</a-button>
</a-flex>

定义变量，用于存储图片结果：

const resultImageUrl = ref<string>()

3）编写创建任务函数：

let taskId = ref<string>()

const createTask = async () => {
 if (!props.picture?.id) {
 return
 }
 const res = await createPictureOutPaintingTaskUsingPost({
 pictureId: props.picture.id,

 parameters: {
 xScale: 2,
 yScale: 2,
 },
 })
 if (res.data.code === 0 && res.data.data) {
 message.success('创建任务成功，请耐心等待，不要退出界面')
 console.log(res.data.data.output.taskId)
 taskId.value = res.data.data.output.taskId

 startPolling()
 } else {
 message.error('创建任务失败，' + res.data.message)
 }
}

任务创建成功后，要开启轮询。

4）编写轮询逻辑。注意无论任务执行成功或失败、还是退出

当前页面时，都需要执行清理逻辑，包括：

清理定时器

将定时器变量设置为 null

将任务 id 设置为 null，这样允许前端多次执行任务

代码如下：

let pollingTimer: NodeJS.Timeout = null

const clearPolling = () => {
 if (pollingTimer) {
 clearInterval(pollingTimer)
 pollingTimer = null
 taskId.value = null
 }
}

const startPolling = () => {
 if (!taskId.value) return

 pollingTimer = setInterval(async () => {
 try {
 const res = await getPictureOutPaintingTaskUsingGet({
 taskId: taskId.value,
 })
 if (res.data.code === 0 && res.data.data) {
 const taskResult = res.data.data.output
 if (taskResult.taskStatus === 'SUCCEEDED') {
 message.success('扩图任务成功')
 resultImageUrl.value = taskResult.outputImageUrl
 clearPolling()
 } else if (taskResult.taskStatus === 'FAILED') {
 message.error('扩图任务失败')
 clearPolling()
 }
 }
 } catch (error) {
 console.error('轮询任务状态失败', error)
 message.error('检测任务状态失败，请稍后重试')
 clearPolling()
 }
 }, 3000)
}

onUnmounted(() => {
 clearPolling()
})

5）当任务执行成功后，可以得到图片结果，此时就可以点击

“应用结果” 按钮，调用图片 URL 上传接口。这段代码可以直

接复制已开发的 URL 图片上传组件，补充 loading 效果：

const uploadLoading = ref<boolean>(false)

const handleUpload = async () => {
 uploadLoading.value = true
 try {
 const params: API.PictureUploadRequest = {
 fileUrl: resultImageUrl.value,

 spaceId: props.spaceId,
 }
 if (props.picture) {
 params.id = props.picture.id
 }
 const res = await uploadPictureByUrlUsingPost(params)
 if (res.data.code === 0 && res.data.data) {
 message.success('图片上传成功')

 props.onSuccess?.(res.data.data)

 closeModal()
 } else {
 message.error('图片上传失败，' + res.data.message)
 }
 } catch (error) {
 message.error('图片上传失败')
 } finally {
 uploadLoading.value = false
 }
}

6）适当对页面做一些优化。

给生成图片按钮添加任务执行的 loading 效果，有任务 id

时，禁止按钮点击，可以防止重复提交任务。扩图结束后，

会清理 taskId，就可以再次执行。

<a-button type="primary" :loading="!!taskId" ghost
 @click="createTask">
 生成图片
</a-button>

2）添加应用结果（上传图片时）的 loading 效果：

<a-button type="primary" :loading="uploadLoading"
 @click="handleUpload">
 应用结果
</a-button>

3）有图片结果时才显示 “应用结果” 按钮：

<a-button type="primary" v-if="resultImageUrl"
 :loading="uploadLoading"
 @click="handleUpload">
 应用结果
</a-button>

 

2、创建图片页面引入弹窗

在创建图片页面使用组件，可以在编辑图片按钮右侧增加 “AI

扩图”，点击按钮后打开弹窗：

<a-space size="middle">
 <a-button :icon="h(EditOutlined)" @click="doEditPicture">编辑图片</a
 <a-button type="primary" ghost :icon="h(FullscreenOutlined)" @click
 AI 扩图
 </a-button>
</a-space>
<ImageOutPainting
 ref="imageOutPaintingRef"
 :picture="picture"
 :spaceId="spaceId"
 :onSuccess="onImageOutPaintingSuccess"
/>

编辑点击按钮后触发的函数，打开弹窗：

const imageOutPaintingRef = ref()

const doImagePainting = () => {
 if (imageOutPaintingRef.value) {
 imageOutPaintingRef.value.openModal()
 }
}

const onImageOutPaintingSuccess = (newPicture: API.PictureVO) => {
 picture.value = newPicture
}

运行效果如图，感觉还是不错的吧~

扩展知识 - 异步任务优化

异步任务管理其实算是一类经典业务场景，有许多通用的优

化方法可以提高系统效率和用户体验。

1）任务队列和优先级

使用消息队列系统（比如 RabbitMQ、Kafka）对异步任务进

行管理，可以根据优先级灵活调度任务。通过队列还可以限

制同时处理的任务数量、削峰填谷，防止资源过载，提高系

统稳定性。

2）任务记录和状态管理

现在用户是无法找到往期执行的任务和生成的图片的。可以

设计任务记录表，存储每个任务的状态、结果和相关信息，

并提供接口供用户查询历史任务。

前端可以给用户提供往期任务查询页面，能够查看任务结

果、重试某一次任务等。还可以给管理员提供监控系统所有

任务的页面，比如任务数、成功率和失败率，全面掌握任务

执行情况。

实现起来并不难，其实就是对任务记录表的增删改查。

3）任务错误信息优化

完善任务失败的具体原因，帮助用户快速理解和解决问题。

比如参数错误、图片格式不支持等。如果调用了第三方接

口，需要认真阅读接口所有可能的错误情况。

4）计费与额度控制

AI 扩图一般是计费业务，需要做好额度控制，并且仅登录用

户才可以使用。

分享几个实现思路：

1. 在用户表中添加 “扩图额度”（比如使用次数或余额），每

次提交任务前先检查额度是否足够，额度不足则提示用户

充值。

2. 每次任务提交时，可采用预扣费逻辑，任务完成扣费，任

务失败则自动退还额度。

3. 提供查询用户当前剩余额度的接口，用户可以在前端看到

自己剩余的额度。

4. 支持充值额度或会员订阅制收费，还可以根据扩图模式按

比例扣费。比如普通模式扣 1 点，高清模式扣 2 点。

💡 一般对于后付费资源（随用随付费），即使余额 < 0，小

额欠费也是可以接受的。尤其是对于大厂云服务来说，由于

调用量巨大，很难做到实时计费。

5）安全性与稳定性

由于任务要消耗系统资源或成本，所以一定要设置合理的限

流规则，防止恶意刷任务。比如限制单用户的任务提交频

率，每分钟最多允许提交 3 次任务，超过限制后返回提示信

息。

对于长耗时任务，还要设置任务的最大执行时间（比如 10 分

钟），超时则自动标记任务失败。

鱼皮编程导航的 智能 BI 项目 和 面试鸭刷题平台项目 中都

有讲解分布式限流相关的知识，可以按需学习。

此外，可以在任务执行前增加基础的校验，只对符合要求的

图片创建任务，比如图片不能过大或过小：

扩展

https://www.codefather.cn/course/1790980531403927553
https://www.codefather.cn/course/1826803928691945473

1、尝试更多 AI 图片处理能力，比如 参考文档实现图配文

2、如果 AI 绘画 API 支持返回当前进度（比如 MidJourney

的 API），可以通过 SSE 的方式将进度返回给前端，鱼皮编

程导航的 AI 答题应用平台项目 中有关于 SSE 的实战。

3、优化 AI 扩图参数。可以 参考官方文档 ，补充更多扩图

参数，并允许用户自主选择扩图参数：

全文完

本文由 简悦 SimpRead 优化，用以提升阅读体验

使用了 全新的简悦词法分析引擎 ，点击查看详细说明 beta

https://help.aliyun.com/zh/model-studio/developer-reference/image-text-composition-api-reference
https://www.codefather.cn/course/1790274408835506178
https://help.aliyun.com/zh/model-studio/developer-reference/image-scaling-api
http://ksria.com/simpread
http://ksria.com/simpread/docs/#/%E8%AF%8D%E6%B3%95%E5%88%86%E6%9E%90%E5%BC%95%E6%93%8E

